LEADER 07365nam 22019094a 450 001 9910778220303321 005 20200520144314.0 010 $a1-68015-904-6 010 $a1-282-15830-9 010 $a9786612158308 010 $a1-4008-2697-7 024 7 $a10.1515/9781400826971 035 $a(CKB)1000000000788506 035 $a(EBL)457707 035 $a(SSID)ssj0000258451 035 $a(PQKBManifestationID)11222448 035 $a(PQKBTitleCode)TC0000258451 035 $a(PQKBWorkID)10255702 035 $a(PQKB)11222166 035 $a(DE-B1597)446523 035 $a(OCoLC)979576705 035 $a(DE-B1597)9781400826971 035 $a(Au-PeEL)EBL457707 035 $a(CaPaEBR)ebr10312464 035 $a(CaONFJC)MIL215830 035 $a(OCoLC)402438467 035 $a(MiAaPQ)EBC457707 035 $a(PPN)170243893 035 $a(EXLCZ)991000000000788506 100 $a20041214d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aThermodynamics$b[electronic resource] $ea dynamical systems approach /$fWassim M. Haddad, VijaySekhar Chellaboina, Sergey G. Nersesov 205 $aCourse Book 210 $aPrinceton $cPrinceton University Press$dc2005 215 $a1 online resource (199 p.) 225 1 $aPrinceton series in applied mathematics 300 $aDescription based upon print version of record. 311 $a0-691-12327-6 320 $aIncludes bibliographical references (p. [175]-183) and index. 327 $t Frontmatter -- $tContents -- $tPreface -- $tChapter 1. Introduction -- $tChapter 2. Dynamical System Theory -- $tChapter 3. A Systems Foundation for Thermodynamics -- $tChapter 4. Temperature Equipartition and the Kinetic Theory of Gases -- $tChapter 5. Work, Heat, and the Carnot Cycle -- $tChapter 6. Thermodynamic Systems with Linear Energy Exchange -- $tChapter 7. Continuum Thermodynamics -- $tChapter 8. Conclusion -- $tBibliography -- $tIndex 330 $aThis book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth. This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science. 410 0$aPrinceton series in applied mathematics. 606 $aThermodynamics$xMathematics 606 $aDifferentiable dynamical systems 610 $aAddition. 610 $aAdiabatic process. 610 $aApplied mathematics. 610 $aArthur Eddington. 610 $aAsymmetry. 610 $aAvailable energy (particle collision). 610 $aAxiom. 610 $aBalance equation. 610 $aBanach space. 610 $aBoltzmann's entropy formula. 610 $aBrillouin scattering. 610 $aCarnot cycle. 610 $aClassical mechanics. 610 $aClausius (crater). 610 $aCompact space. 610 $aConservation law. 610 $aConservation of energy. 610 $aConstant of integration. 610 $aContinuous function (set theory). 610 $aContinuous function. 610 $aControl theory. 610 $aDeformation (mechanics). 610 $aDerivative. 610 $aDiathermal wall. 610 $aDiffeomorphism. 610 $aDifferentiable function. 610 $aDiffusion process. 610 $aDimension (vector space). 610 $aDimension. 610 $aDissipation. 610 $aDot product. 610 $aDynamical system. 610 $aEmergence. 610 $aEnergy density. 610 $aEnergy level. 610 $aEnergy storage. 610 $aEnergy. 610 $aEntropy. 610 $aEquation. 610 $aEquations of motion. 610 $aEquilibrium point. 610 $aEquilibrium thermodynamics. 610 $aEquipartition theorem. 610 $aExistential quantification. 610 $aFirst law of thermodynamics. 610 $aHamiltonian mechanics. 610 $aHeat capacity. 610 $aHeat death of the universe. 610 $aHeat flux. 610 $aHeat transfer. 610 $aHomeomorphism. 610 $aHydrogen atom. 610 $aIdeal gas. 610 $aInequality (mathematics). 610 $aInfimum and supremum. 610 $aInfinitesimal. 610 $aInitial condition. 610 $aInstant. 610 $aInternal energy. 610 $aIrreversible process. 610 $aIsolated system. 610 $aKinetic theory of gases. 610 $aLaws of thermodynamics. 610 $aLinear dynamical system. 610 $aLipschitz continuity. 610 $aLocal boundedness. 610 $aLyapunov function. 610 $aLyapunov stability. 610 $aMathematical optimization. 610 $aMathematics. 610 $aMolecule. 610 $aNon-equilibrium thermodynamics. 610 $aOperator norm. 610 $aProbability. 610 $aQuantity. 610 $aReversible process (thermodynamics). 610 $aSecond law of thermodynamics. 610 $aSemi-infinite. 610 $aSmoothness. 610 $aState variable. 610 $aState-space representation. 610 $aStatistical mechanics. 610 $aSteady state. 610 $aSummation. 610 $aSupply (economics). 610 $aSystems theory. 610 $aTemperature. 610 $aTheorem. 610 $aTheoretical physics. 610 $aTheory. 610 $aThermal conduction. 610 $aThermal equilibrium. 610 $aThermodynamic equilibrium. 610 $aThermodynamic process. 610 $aThermodynamic state. 610 $aThermodynamic system. 610 $aThermodynamic temperature. 610 $aThermodynamics. 610 $aTime evolution. 610 $aZeroth law of thermodynamics. 615 0$aThermodynamics$xMathematics. 615 0$aDifferentiable dynamical systems. 676 $a536/.7 686 $aUG 1000$2rvk 700 $aHaddad$b Wassim M.$f1961-$0447740 701 $aChellaboina$b VijaySekhar$f1970-$0447741 701 $aNersesov$b Sergey G.$f1976-$0770667 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910778220303321 996 $aThermodynamics$91572600 997 $aUNINA