LEADER 01059nam--2200373---450- 001 990003405540203316 005 20130422095958.0 010 $a978-2-251-32441-8 035 $a000340554 035 $aUSA01000340554 035 $a(ALEPH)000340554USA01 035 $a000340554 100 $a20100527h2007----km-y0itay50------ba 101 $afre 102 $aFR 105 $a||||||||001yy 200 1 $aAmphiaraos$eguerrier, devin et guérisseur$fPierre Sineux 210 $aParis$cLes Belles Lettres$d2007 215 $a276 p.$d22 cm 225 2 $aVérité des mythes 410 0$12001$aVérité des mythes 600 $aAnfiarao$xMiti$2BNCF 676 $a292.213 700 1$aSINEUX,$bPierre$0295223 801 0$aIT$bsalbc$gISBD 912 $a990003405540203316 951 $aV.1.B. 972$b225382 L.M.$cV.1.$d00258979 959 $aBK 969 $aUMA 979 $aPAOLA$b90$c20100527$lUSA01$h1622 979 $aPAOLA$b90$c20100527$lUSA01$h1624 979 $aDSA$b90$c20130422$lUSA01$h0959 996 $aAmphiaraos$91125992 997 $aUNISA LEADER 03547nam 22008295 450 001 9910154744603321 005 20190708092533.0 010 $a1-4008-8246-X 024 7 $a10.1515/9781400882465 035 $a(CKB)3710000000631345 035 $a(MiAaPQ)EBC4738731 035 $a(DE-B1597)467922 035 $a(OCoLC)979743249 035 $a(DE-B1597)9781400882465 035 $a(EXLCZ)993710000000631345 100 $a20190708d2016 fg 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 13$aAn Extension of Casson's Invariant. (AM-126), Volume 126 /$fKevin Walker 210 1$aPrinceton, NJ : $cPrinceton University Press, $d[2016] 210 4$d©1992 215 $a1 online resource (140 pages) $cillustrations 225 0 $aAnnals of Mathematics Studies ;$v308 311 $a0-691-08766-0 311 $a0-691-02532-0 320 $aIncludes bibliographical references. 327 $tFrontmatter -- $tContents -- $t0. Introduction -- $t1. Topology of Representation Spaces -- $t2. Definition of ? -- $t3. Various Properties of ? -- $t4. The Dehn Surgery Formula -- $t5. Combinatorial Definition of ? -- $t6. Consequences of the Dehn Surgery Formula -- $tA. Dedekind Sums -- $tB. Alexander Polynomials -- $tBibliography 330 $aThis book describes an invariant, l, of oriented rational homology 3-spheres which is a generalization of work of Andrew Casson in the integer homology sphere case. Let R(X) denote the space of conjugacy classes of representations of p(X) into SU(2). Let (W,W,F) be a Heegaard splitting of a rational homology sphere M. Then l(M) is declared to be an appropriately defined intersection number of R(W) and R(W) inside R(F). The definition of this intersection number is a delicate task, as the spaces involved have singularities. A formula describing how l transforms under Dehn surgery is proved. The formula involves Alexander polynomials and Dedekind sums, and can be used to give a rather elementary proof of the existence of l. It is also shown that when M is a Z-homology sphere, l(M) determines the Rochlin invariant of M. 410 0$aAnnals of mathematics studies ;$vno. 126. 606 $aThree-manifolds (Topology) 606 $aInvariants 610 $aAbsolute value. 610 $aAndrew Casson. 610 $aBasis (linear algebra). 610 $aCohomology. 610 $aDan Freed. 610 $aDehn surgery. 610 $aDehn twist. 610 $aDeterminant. 610 $aDiagram (category theory). 610 $aDisk (mathematics). 610 $aElementary proof. 610 $aFundamental group. 610 $aGeneral position. 610 $aHeegaard splitting. 610 $aHomology sphere. 610 $aIdentity matrix. 610 $aInner product space. 610 $aLie group. 610 $aMathematical sciences. 610 $aMorris Hirsch. 610 $aNormal bundle. 610 $aScientific notation. 610 $aSequence. 610 $aSurjective function. 610 $aSymplectic geometry. 610 $aTheorem. 610 $aTopology. 615 0$aThree-manifolds (Topology) 615 0$aInvariants. 676 $a514/.3 686 $aSK 320$2rvk 700 $aWalker$b Kevin, $0350732 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910154744603321 996 $aAn Extension of Casson's Invariant. (AM-126), Volume 126$92786236 997 $aUNINA LEADER 03474nam 22006614a 450 001 9910777851703321 005 20221107225808.0 010 $a1-281-72229-4 010 $a9786611722296 010 $a0-300-13003-1 024 7 $a10.12987/9780300130034 035 $a(CKB)1000000000471921 035 $a(StDuBDS)AH23049636 035 $a(SSID)ssj0000144891 035 $a(PQKBManifestationID)11132532 035 $a(PQKBTitleCode)TC0000144891 035 $a(PQKBWorkID)10147942 035 $a(PQKB)10272590 035 $a(DE-B1597)484877 035 $a(OCoLC)952732236 035 $a(DE-B1597)9780300130034 035 $a(Au-PeEL)EBL3420018 035 $a(CaPaEBR)ebr10170044 035 $a(CaONFJC)MIL172229 035 $a(OCoLC)923589753 035 $a(MiAaPQ)EBC3420018 035 $a(EXLCZ)991000000000471921 100 $a20020108d2002 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aElectoral realignments$b[electronic resource] $ea critique of an American genre /$fDavid R. Mayhew 210 $aNew Haven, CT $cYale University Press$d2002 215 $a1 online resource (192 p.) 225 1 $aThe Yale ISPS series 300 $aBibliographic Level Mode of Issuance: Monograph 311 0 $a0-300-09336-5 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tAcknowledgments --$tIntroduction --$tChapter 2. The Realignments Perspective --$tChapter 3. Framing the Critique --$tChapter 4. The Cyclical Dynamic --$tChapter 5. Processes and Issues --$tChapter 6. Policies and Democracy --$tConclusion --$tIndex 330 $aThe study of electoral realignments is one of the most influential and intellectually stimulating enterprises undertaken by American political scientists. Realignment theory has been seen as a science able to predict changes, and generations of students, journalists, pundits, and political scientists have been trained to be on the lookout for "signs" of new electoral realignments. Now a major political scientist argues that the essential claims of realignment theory are wrong-that American elections, parties, and policymaking are not (and never were) reconfigured according to the realignment calendar. David Mayhew examines fifteen key empirical claims of realignment theory in detail and shows us why each in turn does not hold up under scrutiny. It is time, he insists, to open the field to new ideas. We might, for example, adopt a more nominalistic, skeptical way of thinking about American elections that highlights contingency, short-term election strategies, and valence issues. Or we might examine such broad topics as bellicosity in early American history, or racial questions in much of our electoral history. But we must move on from an old orthodoxy and failed model of illumination. 410 0$aYale ISPS series. 606 $aPolitical parties$zUnited States$xHistory 606 $aElections$zUnited States$xHistory 606 $aParty affiliation$zUnited States$xHistory 615 0$aPolitical parties$xHistory. 615 0$aElections$xHistory. 615 0$aParty affiliation$xHistory. 676 $a324/.0973 700 $aMayhew$b David R$0696724 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910777851703321 996 $aElectoral realignments$93845513 997 $aUNINA