LEADER 02529nam 2200613Ia 450 001 9910777660203321 005 20230828211143.0 010 $a1-280-56816-X 010 $a9786610568161 010 $a1-904602-80-0 010 $a1-4294-1316-6 035 $a(CKB)1000000000465097 035 $a(EBL)306391 035 $a(OCoLC)290496745 035 $a(SSID)ssj0000201895 035 $a(PQKBManifestationID)11171590 035 $a(PQKBTitleCode)TC0000201895 035 $a(PQKBWorkID)10245610 035 $a(PQKB)10420562 035 $a(MiAaPQ)EBC306391 035 $a(Au-PeEL)EBL306391 035 $a(CaPaEBR)ebr10141227 035 $a(CaONFJC)MIL56816 035 $a(EXLCZ)991000000000465097 100 $a19990414d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMethods for solving mathematical physics problems$b[electronic resource] /$fV.I. Agoshkov, P.B. Dubovski, V.P. Shutyaev 210 $aCambridge $cCambridge International Science Publishing$dc2006 215 $a1 online resource (334 p.) 300 $aDescription based upon print version of record. 311 $a1-904602-05-3 320 $aIncludes bibliographical references and index. 327 $aIndex; C; A; F; B; E; D; K; J; I; H; G; M; L; W; R; P; V; Q; S; N; T; O; Y 330 $aThe book examines the classic and generally accepted methods for solving mathematical physics problems (method of the potential theory, the eigenfunction method, integral transformation methods, discretisation characterisation methods, splitting methods). A separate chapter is devoted to methods for solving nonlinear equations. The book offers a large number of examples of how these methods are applied to the solution of specific mathematical physics problems, applied in the areas of science and social activities, such as energy, environmental protection, hydrodynamics, theory of elasticity, e 606 $aMathematical physics$vProblems, exercises, etc 606 $aPhysics$vProblems, exercises, etc 615 0$aMathematical physics 615 0$aPhysics 676 $a530.15 676 $a530.15/535 700 $aAgoshokov$b V. I$01526377 701 $aDubovski$b P. B$01526378 701 $aShutyaev$b V. P$01526379 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910777660203321 996 $aMethods for solving mathematical physics problems$93768397 997 $aUNINA