LEADER 05482nam 2200697Ia 450 001 9910777464703321 005 20230721031310.0 010 $a1-281-91858-X 010 $a9786611918583 010 $a981-270-875-8 035 $a(CKB)1000000000415698 035 $a(EBL)1193644 035 $a(SSID)ssj0000300354 035 $a(PQKBManifestationID)12071352 035 $a(PQKBTitleCode)TC0000300354 035 $a(PQKBWorkID)10250693 035 $a(PQKB)11207757 035 $a(MiAaPQ)EBC1193644 035 $a(WSP)00006481 035 $a(Au-PeEL)EBL1193644 035 $a(CaPaEBR)ebr10698764 035 $a(CaONFJC)MIL191858 035 $a(OCoLC)850162856 035 $a(EXLCZ)991000000000415698 100 $a20080115d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aIntroduction to modern navigation systems$b[electronic resource] /$fEsmat Bekir 210 $aNew Jersey $cWorld Scientific$dc2007 215 $a1 online resource (256 p.) 300 $aIncludes bibliographical references and index. 311 $a981-270-766-2 311 $a981-270-765-4 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; Introduction; 1. Vectors and Matrices; 1.1 Introduction; 1.2 Vector Inner Product; 1.3 Vector Cross Products and Skew Symmetric Matrix Algebra; 2. Coordinate Transformation between Orthonormal Frames; 2.1 Introduction; 2.2 Direction Cosine Matrices; 2.3 The Direction Cosine Matrix is a Unitary Matrix; 2.4 The Direction Cosine Matrix is a Transformation Matrix; 2.5 DCM Fixed Axis; 2.6 The Rotation Matrix; 2.7 Inner and Outer Transformation Matrices; 2.8 The Quaternion; 3. Forms of the Transformation Matrix; 3.1 Introduction; 3.2 Simple Frame Rotations; 3.3 Euler Angles 327 $a3.4 Rotation Vector3.5 Quaternion; 3.6 Simple Quaternions; 3.7 Conversion between Forms; 3.7.1 Conversion between DCM and Euler; 3.7.2 Conversion between DCM and Quaternion; 3.7.3 Conversion between Euler Angles and Quaternion; 3.8 Dynamics of the Transformation Matrix; 3.8.1 DCM Differential Equation; 3.8.2 Quaternion Differential Equation; 3.8.3 Rotation Vector Differential Equation; 3.8.4 Euler Angles Differential Equation; 4. Earth and Navigation; 4.1 Introduction; 4.2 Earth, Geoid and Ellipsoid; 4.3 Radii of Curvature; 4.4 Earth, Inertial and Navigation Frames; 4.5 Earth Rate 327 $a4.6 The Craft Rate n en ?4.7 Solution of the DCM n e C; 4.8 Gravitational and Gravity Fields; 5. The Inertial Navigation System Equations; 5.1 Introduction; 5.2 Body Frame of Reference; 5.3 Inertial Sensors; 5.3.1 The Accelerometer; 5.3.2 The Rate Gyro; 5.4 The Attitude Equation; 5.5 The Navigation Equation; 5.6 Navigation Equations Computational Flow Diagram; 5.7 The Navigation Equation in Earth Frame; 6. Implementation; 6.1 Introduction; 6.2 The Rotation Vector Differential Equation; 6.3 The Attitude Equation; 6.4 The Craft Velocity Equation; 6.5 The Craft Position Equation 327 $a6.6 The Vertical Channel7. Air Data Computer; 7.1 Introduction; 7.2 US Standard Atmosphere 1976; 7.3 Pressure Altitude; 7.4 Vertical Channel Parameter Estimation Using Inertial and Air Data; 7.5 Density Altitude; 7.6 Altitude (Descend/Climb) Rate; 7.7 Air Speed; 7.8 Indicated Air Speed (IAS); 8. Polar Navigation; 8.1 Introduction; 8.2 The Wander Azimuth Navigation; 8.3 Prospective of the Wander Azimuth Approach; 8.4 Polar Circle Navigation Algorithm; 8.5 Alternative Polar Circle Navigation Frame; 9. Alignment; 9.1 Introduction; 9.2 IMU Alignment; 9.3 Alternative Algorithm for b n C 327 $a9.4 Estimation of the Accelerometer and Gyro Biases9.5 Effects of Biases on Estimate of b n C; 10. Attitude and Heading Reference System; 10.1 Introduction; 10.2 Attitude Initialization; 10.3 Heading Initialization; 10.4 Gyro Drift Compensation; 10.5 G Slaving; 10.5.1 X-Gyro Bias; 10.5.2 Y-Gyro Bias; 10.5.3 Z-Gyro Bias; 10.6 Alternative Approach for Gyro Drift Compensation; 10.7 Maneuver Detector; 10.7.1 Rate Gyro Threshold Selection; 11. GPS Aided Inertial System; 11.1 Introduction; 11.2 Navigation Frame Error Equation; 11.2.1 Craft Rate Error n en ? ?; 11.2.2 Earth Rate Error n ie ? ? 327 $a11.2.3 Position Errors 330 $aThe emerging technology of very inexpensive inertial sensors is available for navigation as never before. The book lays the analytical foundation for understanding and implementing the navigation equations. It starts by demystifying the central theme of the frame rotation using such algorithms as the quaternions, the rotation vector and the Euler angles. After developing navigation equations, the book introduces the computational issues and discusses the physical aspects that are tied to implementing these equations. The book then explains alignment techniques.Introduction to Modern Navigation 606 $aInertial navigation systems 606 $aInertial navigation 606 $aGlobal Positioning System 615 0$aInertial navigation systems. 615 0$aInertial navigation. 615 0$aGlobal Positioning System. 676 $a623.893 676 $a629.04/5 676 $a629.045 700 $aBekir$b Esmat$01560453 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910777464703321 996 $aIntroduction to modern navigation systems$93826413 997 $aUNINA