LEADER 03782nam 2200637 a 450 001 9910777458503321 005 20200520144314.0 010 $a1-281-51280-X 010 $a9786611512804 010 $a3-540-77209-X 024 7 $a10.1007/978-3-540-77209-5 035 $a(CKB)1000000000440905 035 $a(EBL)367323 035 $a(OCoLC)272298809 035 $a(SSID)ssj0000140806 035 $a(PQKBManifestationID)11148607 035 $a(PQKBTitleCode)TC0000140806 035 $a(PQKBWorkID)10074287 035 $a(PQKB)10714355 035 $a(DE-He213)978-3-540-77209-5 035 $a(MiAaPQ)EBC367323 035 $a(Au-PeEL)EBL367323 035 $a(CaPaEBR)ebr10239415 035 $a(CaONFJC)MIL151280 035 $a(PPN)127052240 035 $a(EXLCZ)991000000000440905 100 $a20080130d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDomain decomposition methods for the numerical solution of partial differential equations$b[electronic resource] /$fTarek P.A. Mathew 205 $a1st ed. 2008. 210 $aBerlin $cSpringer$dc2008 215 $a1 online resource (780 p.) 225 1 $aLecture notes in computational science and engineering,$x1439-7358 ;$v61 300 $aDescription based upon print version of record. 311 $a3-540-77205-7 320 $aIncludes bibliographical references (p. [711]-760) and index. 327 $aDecomposition Frameworks -- Schwarz Iterative Algorithms -- Schur Complement and Iterative Substructuring Algorithms -- Lagrange Multiplier Based Substructuring: FETI Method -- Computational Issues and Parallelization -- Least Squares-Control Theory: Iterative Algorithms -- Multilevel and Local Grid Refinement Methods -- Non-Self Adjoint Elliptic Equations: Iterative Methods -- Parabolic Equations -- Saddle Point Problems -- Non-Matching Grid Discretizations -- Heterogeneous Domain Decomposition Methods -- Fictitious Domain and Domain Imbedding Methods -- Variational Inequalities and Obstacle Problems -- Maximum Norm Theory -- Eigenvalue Problems -- Optimization Problems -- Helmholtz Scattering Problem. 330 $aDomain decomposition methods are divide and conquer methods for the parallel and computational solution of partial differential equations of elliptic or parabolic type. They include iterative algorithms for solving the discretized equations, techniques for non-matching grid discretizations and techniques for heterogeneous approximations. This book serves as an introduction to this subject, with emphasis on matrix formulations. The topics studied include Schwarz, substructuring, Lagrange multiplier and least squares-control hybrid formulations, multilevel methods, non-self adjoint problems, parabolic equations, saddle point problems (Stokes, porous media and optimal control), non-matching grid discretizations, heterogeneous models, fictitious domain methods, variational inequalities, maximum norm theory, eigenvalue problems, optimization problems and the Helmholtz scattering problem. Selected convergence theory is included. 410 0$aLecture notes in computational science and engineering ;$v61. 606 $aDecomposition method 606 $aDifferential equations, Partial$xNumerical solutions 615 0$aDecomposition method. 615 0$aDifferential equations, Partial$xNumerical solutions. 676 $a515.353 700 $aMathew$b Tarek P. A$g(Tarek Poonithara Abraham)$0724516 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910777458503321 996 $aDomain decomposition methods for the numerical solution of partial differential equations$91419886 997 $aUNINA