LEADER 03583nam 22007212 450 001 9910777392003321 005 20151005020622.0 010 $a1-107-12310-0 010 $a1-280-43323-X 010 $a9786610433230 010 $a0-511-17734-8 010 $a0-511-02094-5 010 $a0-511-15830-0 010 $a0-511-32569-X 010 $a0-511-54300-X 010 $a0-511-04785-1 035 $a(CKB)1000000000002995 035 $a(EBL)201664 035 $a(OCoLC)56213061 035 $a(SSID)ssj0000155824 035 $a(PQKBManifestationID)11148941 035 $a(PQKBTitleCode)TC0000155824 035 $a(PQKBWorkID)10122158 035 $a(PQKB)11162435 035 $a(UkCbUP)CR9780511543005 035 $a(Au-PeEL)EBL201664 035 $a(CaPaEBR)ebr10021830 035 $a(CaONFJC)MIL43323 035 $a(MiAaPQ)EBC201664 035 $a(PPN)261331590 035 $a(EXLCZ)991000000000002995 100 $a20090505d2001|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFixed point theory and applications /$fRavi P. Agarwal, Maria Meehan, Donal O'Regan$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2001. 215 $a1 online resource (x, 170 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v141 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-10419-X 311 $a0-521-80250-4 320 $aIncludes bibliographical references (p. 159-167) and index. 327 $tContractions --$tNonexpansive maps --$tContinuation methods for contractive and nonexpansive mappings --$tTheorems of brouwer, schauder and mo?nch --$tNonlinear alternatives of leray-schauder type --$tContinuation principles for condensing maps --$tFixed point theorems in conical shells --$tFixed point theory in hausdorff locally convex linear topological spaces --$tContractive and nonexpansive multivalued maps --$tMultivalued maps with continuous selections --$tMultivalued maps with closed graph --$tDegree theory. 330 $aThis book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type. 410 0$aCambridge tracts in mathematics ;$v141. 517 3 $aFixed Point Theory & Applications 606 $aFixed point theory 606 $aMappings (Mathematics) 615 0$aFixed point theory. 615 0$aMappings (Mathematics) 676 $a514 700 $aAgarwal$b Ravi P.$041786 702 $aMeehan$b Maria 702 $aO'Regan$b Donal 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910777392003321 996 $aFixed point theory and applications$93829082 997 $aUNINA