LEADER 03784nam 22006855 450 001 9910768200003321 005 20251113204545.0 010 $a981-16-3127-1 010 $a981-16-3128-X 010 $a981-16-3128-X 024 7 $a10.1007/978-981-16-3128-3 035 $a(CKB)4100000011995612 035 $a(MiAaPQ)EBC6692784 035 $a(Au-PeEL)EBL6692784 035 $a(PPN)257354336 035 $a(OCoLC)1264473424 035 $a(DE-He213)978-981-16-3128-3 035 $a(EXLCZ)994100000011995612 100 $a20210806d2022 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFrontiers in Nature-Inspired Industrial Optimization /$fedited by Mahdi Khosravy, Neeraj Gupta, Nilesh Patel 205 $a1st ed. 2022. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2022. 215 $a1 online resource (245 pages) 225 1 $aSpringer Tracts in Nature-Inspired Computing,$x2524-5538 311 08$a981-16-3127-1 327 $aAssociation Rules Over Time -- A Study of Crossover Operators in Genetic Algorithms -- Memetic Strategies for Network Design Problems -- A Coronavirus Optimization Algorithm for Solving The Container Retrieval Problem -- Optimum Outlier Detection in Internet of Things Industries Using Autoencoder -- Particle Swarm Optimization Advances in Internet of Things Industry -- Reconfiguration of Electric Power Distribution Networks: A Typical Application of Metaheuristics in Electrical Power Field -- Reconfiguration of Electric Power Distribution Networks: A Typical Application of Metaheuristics in Electrical Power Field -- Multi Objective Optimization and Decision Making for Net Zero Energy Smart House -- Using Fuzzy Approach In Determining Critical Parameters for Optimum Safety Functions In Mega Projects (Case Study: Iran's Construction Industry) -- Using Fuzzy Approach in Determining Critical Parameters for Optimum Safety Functions in Mega Projects (Case Study: Iran's Construction Industry) -- Evolutionary Machine Learning Powered by Genetics Algorithm for Iot-Specific Health Monitoring of Agriculture Vehicles. 330 $aThe book provides a collection of recent applications of nature inspired optimization in industrial fields. Different optimization techniques have been deployed, and different problems have been effectively analyzed. The valuable contributions from researchers focus on three ultimate goals (i) improving the accuracy of these techniques, (ii) achieving higher speed and lower computational complexity, and (iii) working on their proposed applications. The book is helpful for active researchers and practitioners in the field. . 410 0$aSpringer Tracts in Nature-Inspired Computing,$x2524-5538 606 $aComputational intelligence 606 $aMathematical optimization 606 $aAlgorithms 606 $aMathematics$xData processing 606 $aComputational Intelligence 606 $aOptimization 606 $aAlgorithms 606 $aComputational Science and Engineering 615 0$aComputational intelligence. 615 0$aMathematical optimization. 615 0$aAlgorithms. 615 0$aMathematics$xData processing. 615 14$aComputational Intelligence. 615 24$aOptimization. 615 24$aAlgorithms. 615 24$aComputational Science and Engineering. 676 $a620.1121 702 $aKhosravy$b Mahdi 702 $aGupta$b Neeraj 702 $aPatel$b Nilesh 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910768200003321 996 $aFrontiers in nature-inspired industrial optimization$93656163 997 $aUNINA