LEADER 03411nam 22005535 450 001 9910768182703321 005 20200630000240.0 010 $a3-0348-0843-7 024 7 $a10.1007/978-3-0348-0843-9 035 $a(CKB)3710000000224655 035 $a(EBL)1802685 035 $a(SSID)ssj0001338669 035 $a(PQKBManifestationID)11780379 035 $a(PQKBTitleCode)TC0001338669 035 $a(PQKBWorkID)11344616 035 $a(PQKB)10358191 035 $a(MiAaPQ)EBC1802685 035 $a(DE-He213)978-3-0348-0843-9 035 $a(PPN)180621807 035 $a(EXLCZ)993710000000224655 100 $a20140820d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCondenser Capacities and Symmetrization in Geometric Function Theory /$fby Vladimir N. Dubinin 205 $a1st ed. 2014. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2014. 215 $a1 online resource (352 p.) 300 $aDescription based upon print version of record. 311 $a1-322-13355-7 311 $a3-0348-0842-9 320 $aIncludes bibliographical references and index. 327 $aPreface -- 1.Conformal capacity -- 2. Asymptotics of the condenser capacity when one of the plate degenerates -- Special transformations -- 4. Symmetrization -- 5. Metric properties of sets and condensers -- 6. Problems of extremal decomposition -- 7. Univalent functions -- 8. Multivalent functions -- Appendices: A1. Dirichlet principle -- A2. Uniqueness theorem for contracting mapping -- A3. On separating transformation of sets and condensers -- A4. On conservation of reduced moduli under geometric trans-formation of domains -- A5. Quadratic differentials -- A6. Unsolved problems -- References -- Basic notations -- Subject index. 330 $aThis is the first systematic presentation of the capacitory approach and symmetrization in the context of complex analysis. The content of the book is original ? the main part has not been covered by existing textbooks and monographs. After an introduction to the theory of condenser capacities in the plane, the monotonicity of the capacity under various special transformations (polarization, Gonchar transformation, averaging transformations and others) is established, followed by various types of symmetrization which are one of the main objects of the book. By using symmetrization principles, some metric properties of compact sets are obtained and some extremal decomposition problems are solved. Moreover, the classical and present facts for univalent and multivalent meromorphic functions are proven. This book will be a valuable source for current and future researchers in various branches of complex analysis and potential theory. 606 $aMathematical physics 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 615 0$aMathematical physics. 615 14$aMathematical Physics. 676 $a515 676 $a515.9 676 $a515/.9 700 $aDubinin$b Vladimir N$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721675 702 $aKruzhilin$b Nikolai G. 906 $aBOOK 912 $a9910768182703321 996 $aYemkosti kondensatorov i simmetrirovaniye v geometricheskoy teorii funktsiy kompleksnogo peremennogo$92961695 997 $aUNINA