LEADER 10935nam 2200469 450 001 9910767549303321 005 20231213075728.0 010 $a981-9949-54-8 035 $a(MiAaPQ)EBC30979453 035 $a(Au-PeEL)EBL30979453 035 $a(OCoLC)1411306862 035 $a(EXLCZ)9929127008600041 100 $a20231213d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aBiotechnology and Omics Approaches for Bioenergy Crops /$fedited by Muhammad Aasim [and five others] 205 $aFirst edition. 210 1$aSingapore :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (298 pages) 311 08$aPrint version: Aasim, Muhammad Biotechnology and Omics Approaches for Bioenergy Crops Singapore : Springer Singapore Pte. Limited,c2023 9789819949533 320 $aIncludes bibliographical references. 327 $aIntro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Bioenergy Crops in the Perspective of Climate Change -- 1.1 Introduction -- 1.2 Fossil Fuels and Global Climate Change -- 1.3 Mitigating Climate Change via Bioenergy Crops -- 1.4 Positive Impacts of Bioenergy Crops on Environment -- 1.5 Land-Use Change and Bioenergy Crops -- 1.6 Potential Bioenergy Crops -- 1.6.1 Maize -- 1.6.2 Sweet Sorghum -- 1.6.3 Sugarcane -- 1.6.4 Hemp -- 1.6.5 Jerusalem Artichoke -- 1.6.6 Switchgrass -- 1.6.7 Cardoon -- 1.7 Bioenergy Crops and Marginal Lands -- 1.8 Future of Bioenergy Crops -- 1.9 Conclusion -- References -- 2: Major and Potential Biofuel Crops -- 2.1 Introduction -- 2.1.1 Maize (Zea mays L.) -- 2.1.2 Sugarcane (Saccharum officinarum L.) -- 2.1.3 Sweet Sorghum (Sorghum bicolor L.) -- 2.1.4 Sugar Beet (Beta vulgaris) -- 2.1.5 Soybean (Glycine max L.) -- 2.1.6 Rapeseed (Brassica napus) -- 2.1.7 Palm Oil (Elaeis guineensis) -- 2.1.8 Jatropha (Jatropha curcas L.) -- 2.2 Potential and Promising Biofuel Crops -- 2.2.1 Tobacco (Nicotiana tabacum) -- 2.2.2 Cotton (Gossypium hirsutum) -- 2.2.3 Cassava (Manihot esculenta) -- 2.2.4 Sweet Potato (Ipomoea batatas L.) -- References -- 3: Biotechnological Approaches for the Production of Bioenergy -- 3.1 Introduction -- 3.2 Types of Bioenergy -- 3.2.1 Bioethanol -- 3.2.2 Biodiesel -- 3.2.3 Biohydrogen -- 3.3 Biotechnological Approaches for Biofuel Production -- 3.3.1 Isolation of Enzymes from Microbial Sources -- 3.3.1.1 Amylase and Cellulase Enzymes -- Sources -- Identification and Isolation of Enzymes from Microbial (Bacterial and Fungal) Sources -- Identification of Bacteria and Fungi Producing Amylase and Cellulase -- PCR Amplification of Specific Genes -- Functional Gene Microarray -- Metagenomic Analysis -- Proteomic Analysis. 327 $aEnzyme Screening -- Enzyme Production -- Cell Disruption -- Enzyme Purification -- Enzyme Characterization -- 3.3.2 Microbial Fermentation and Enzyme Hydrolysis for the Production of Bioenergy -- 3.3.2.1 Bioethanol -- First- and Second-Generation Bioethanol Production -- Feedstock Preparation for Bioethanol Production -- Grinding and Milling of Feedstock -- Pretreatment -- Hydrolysis and Fermentation -- Separation and Dehydration -- 3.3.2.2 Third Generation Bioethanol Production -- 3.3.2.3 Biodiesel -- 3.3.2.4 Feedstock Preparation -- 3.3.2.5 Transesterification -- 3.3.2.6 Separation -- 3.3.2.7 Washing and Drying -- 3.3.2.8 Storage and Distribution -- 3.3.2.9 Biohydrogen -- Dark Fermentation -- Photo Fermentation -- Algal Hydrogen Production -- Biophotolysis -- 3.4 Genetic Engineering and Bioenergy Production -- 3.4.1 Plant Biomass Yield Improvement -- 3.4.2 Improving the Conversion of Plant Biomass into Biofuels -- 3.4.3 Reduced Environmental Impact -- 3.4.4 Sustainable Production -- 3.4.5 Genetic Engineering and Production of Bioethanol -- 3.4.5.1 Metabolic Engineering -- 3.4.5.2 Genome Shuffling -- 3.4.5.3 CRISPR-Cas9-Based Genome Editing -- 3.4.5.4 Gene Cloning -- 3.4.5.5 Genetic Engineering and Biodiesel Production -- 3.4.5.6 Metabolic Engineering -- 3.4.5.7 Gene Overexpression -- 3.4.5.8 CRISPR-Cas9-Based Genome Editing -- 3.4.6 Genetic Engineering and Production of Biohydrogen -- 3.4.7 Genetic Engineering and Ethical Considerations in Bioenergy Production -- 3.4.7.1 Genetic Engineering and Ecosystem Safety -- 3.4.7.2 Genetic Engineering and Ethical Concerns in Bioenergy Production -- 3.4.7.3 Public Acceptance for Genetically Engineered Biofuels -- 3.5 Biorefineries and Production of Bioenergy -- 3.5.1 Importance of Biorefineries in the Production of Biofuels -- 3.5.1.1 Feedstock Preparation/Pretreatment. 327 $a3.5.1.2 Biomass Conversion/Hydrolysis -- 3.5.1.3 Byproduct Recovery -- 3.6 Environmental and Economic Considerations of Bioenergy Fuels -- 3.6.1 Important Environmental Considerations of Biofuel Production (Jeswani et al. 2020) -- 3.6.1.1 Land Usage -- 3.6.1.2 Less Pollutant -- 3.6.1.3 Water Usage for the Production of Biofuel Crops -- 3.6.1.4 Soil Degradation -- 3.6.2 Economic Considerations -- 3.6.2.1 Cost of Production -- 3.6.2.2 Energy Security -- 3.6.3 Economic Viability of Biofuel Production from Biotechnology -- 3.6.3.1 Feedstock Costs and Biotechnology -- 3.6.3.2 Processing Costs of Feedstocks -- 3.6.3.3 Market Demand and Public Interest -- 3.7 Future Prospects -- References -- 4: Integrated OMIC Approaches for Bioenergy Crops -- 4.1 Introduction -- 4.2 Overview of OMIC Approaches -- 4.3 Integrated OMIC Approaches -- 4.4 Challenges and Future Directions -- 4.5 Conclusion -- References -- 5: Genomics of Bioenergy Crops -- 5.1 Introduction -- 5.2 Applications of Genomics in the Development of Energy Crops -- 5.3 Evolutionary Relationships in Higher Plants and Their Genomes -- 5.4 Genome Sequencing -- 5.5 Analysis of Genetic Variation -- 5.5.1 Target Traits for Bioenergy Plant Improvement -- 5.6 Model Bioenery Crops -- 5.7 Genomics of Specific Bioenergy Species -- 5.8 Sorghum -- 5.9 Sugarcane -- 5.10 Maize -- 5.11 Poplar -- 5.12 Eucalyptus -- References -- 6: Omics Approaches for Sorghum: Paving the Way to a Resilient and Sustainable Bioenergy Future -- 6.1 Introduction -- 6.2 Abiotic Stresses -- 6.3 Genomic Advances for Abiotic Stress Tolerance -- 6.3.1 Molecular Marker Resources -- 6.3.2 Identification of Loci Governing Abiotic Stress Through QTL Mapping -- 6.3.3 Genome-Wide Association Studies (GWAS) -- 6.3.4 Genomic Selection for Abiotic Stress in Sorghum -- 6.4 Advances in Transcriptomics. 327 $a6.5 Proteomics -- 6.6 Metabolomics -- 6.7 Integration of Omics Technologies -- 6.8 Conclusions -- References -- 7: Exploring Omics Approaches to Enhance Stress Tolerance in Soybean for Sustainable Bioenergy Production -- 7.1 Introduction -- 7.2 Impact of Abiotic and Biotic Stressors on Soybean -- 7.3 Omics Approaches in the Technological Era -- 7.3.1 Genomic Advances for Abiotic Stress Tolerance in Soybean -- 7.3.2 QTL Mapping for Abiotic Stress Tolerance in Soybean -- 7.3.2.1 Genome-Wide Association Studies (GWAS) in Soybean -- 7.4 Proteomics in Soybean -- 7.5 Omics Approaches for Biotic Stresses -- 7.5.1 Soybean Genomics -- 7.5.1.1 Breeding for Biotic Challenges in Soybeans with the Help of QTL and Meta-QTL -- 7.5.1.2 Exploring Biotic Stress Resistance Through Genome-Wide Association Mapping -- 7.5.2 Transcriptomics of Soybean -- 7.5.2.1 Northern Blot Study of Soybean to Assess Biotic Stress -- 7.5.2.2 Microarray ?nvestigation of Soybean Biotic Stress Tolerance -- 7.5.2.3 Assessment of RNA-Seq Data for Soybean Biotic Stress Responses -- 7.5.2.4 MicroRNAs' Role in Soybean Biotic Stress Challenges -- 7.6 Soybean Phenomics -- 7.7 Soybean Proteomics -- 7.8 Conclusion -- References -- 8: Advanced and Sustainable Approaches in Sugarcane Crop Improvements with Reference to Environmental Stresses -- 8.1 Introduction -- 8.2 Markers-Assisted Breeding (MAB) in Sugarcane -- 8.2.1 Application of MMs in Sugarcane Research -- 8.2.2 Molecular Markers (MMs) Related to Sugarcane Biotic Stresses -- 8.2.3 Molecular Markers (MMs) Related to Sugarcane Abiotic Stresses -- 8.3 Sugarcane Genetic Transformation -- 8.3.1 Transformation Approaches -- 8.3.2 Genome Editing (GE) -- 8.3.3 Transformation Approaches in Sugarcane Against Biotic Stresses -- 8.3.4 Transformational Strategies for Abiotic Stresses. 327 $a8.4 Application of Omics Approaches in Sugarcane Crop Improvements -- 8.4.1 Sugarcane Genomics -- 8.4.2 Sugarcane Transcriptomics -- 8.4.3 Sugarcane Proteomics -- 8.4.4 Sugarcane Metabolomics -- 8.5 Conclusion -- References -- 9: Role of Endophytes in the Regulation of Metabolome in Bioenergy Crops -- 9.1 Introduction -- 9.2 Overview of the Chapter -- 9.3 Types of Endophytes and Their Distribution in Bioenergy Crops -- 9.4 Endophyte-Plant Interactions and Their Impact on the Metabolome -- 9.5 Endophyte-Mediated Regulation of Bioenergy Crop Growth and Development -- 9.6 Conclusion -- 9.7 Future Perspective -- References -- 10: Cotton Stalks: Potential Biofuel Recourses for Sustainable Environment -- 10.1 Introduction -- 10.2 Cotton Crop Stalk as Sustainable Biofuel Resources -- 10.3 Biofuels from Cotton Stalks -- 10.3.1 How to Generate Biofuel from Cotton Stalks -- 10.3.1.1 Pyrolysis -- 10.3.1.2 Fermentation -- 10.3.1.3 Gasification -- 10.3.1.4 Hydrolysis -- 10.3.2 Biofuel Generation from Cotton Stalks -- 10.3.2.1 Bio-Oil -- 10.3.2.2 Syngas -- 10.3.2.3 Ethanol -- 10.3.2.4 Biogas -- 10.4 Value Addition Through Biofuel Production by Using Cotton Stalks After Crop Harvest -- 10.5 Biofuel and the Cotton Stalk Economics Potential -- 10.6 Conclusion -- References -- 11: Harmful Insects in Some Biofuel Plants and Their Biology -- 11.1 Introduction -- 11.2 Canola (Brassica napus L.) Harmful Insects -- 11.2.1 Cabbage-Stem Flea Beetle (Psylliodes chrysocephala L.) -- 11.2.2 Diamondback Moth (Plutella xylostella L.) -- 11.2.3 Winter Stem Weevil [(Ceutorhynchus picitarsis (G.)] -- 11.2.4 Cabbage Seed Pod Weevil (Ceutorhynchus pleurostigma M.) -- 11.2.5 Red Turnip Beetle [(Entomoscelis adonidis (Paal)] -- 11.2.6 Cabbage Bug (Eurydema ornatum L.) -- 11.2.7 Cabbage Aphid [Brevicoryne brassicae (L.)]. 327 $a11.3 Safflower (Carthamus tinctorius L.) Harmful Insects. 606 $aPlant biotechnology 615 0$aPlant biotechnology. 676 $a306.4409113 702 $aAasim$b Muhammad 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910767549303321 996 $aBiotechnology and Omics Approaches for Bioenergy Crops$93660476 997 $aUNINA