LEADER 03386nam 22005895 450 001 9910763594403321 005 20240313123808.0 010 $a3-031-45854-0 024 7 $a10.1007/978-3-031-45854-5 035 $a(CKB)28853120900041 035 $a(MiAaPQ)EBC30943653 035 $a(Au-PeEL)EBL30943653 035 $a(DE-He213)978-3-031-45854-5 035 $a(EXLCZ)9928853120900041 100 $a20231114d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElements of Mathematical Analysis $eAn Informal Introduction for Physics and Engineering Students /$fby Costas J. Papachristou 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (127 pages) 225 1 $aSpringerBriefs in Physics,$x2191-5431 311 08$a9783031458538 327 $a1. Functions -- 2. Derivative and Differential -- 3. Some Applications of Derivatives -- 4. Indefinite Integral -- 5. Definite Integral -- 6. Series -- 7. An Elementary Introduction to Differential Equations -- 8. Introduction to Differentiation in Higher Dimensions -- 9. Complex Numbers -- 10. Introduction to Complex Analysis -- Appendix -- Answers to Selected Exercises -- Selected Bibliography -- Index. 330 $aThis book provides a comprehensive yet informal introduction to differentiating and integrating real functions with one variable. It also covers basic first-order differential equations and introduces higher-dimensional differentiation and integration. The focus is on significant theoretical proofs, accompanied by illustrative examples for clarity. A comprehensive bibliography aids deeper understanding. The concept of a function's differential is a central theme, relating to the "differential" within integrals. The discussion of indefinite integrals (collections of antiderivatives) precedes definite integrals, naturally connecting the two. The Appendix offers essential math formulas, exercise properties, and an in-depth exploration of continuity and differentiability. Select exercise solutions are provided. This book suits short introductory math courses for novice physics/engineering students. It equips them with vital differentialand integral calculus tools for real-world applications. It is also useful for first-year undergraduates, reinforcing advanced calculus foundations for better Physics comprehension. 410 0$aSpringerBriefs in Physics,$x2191-5431 606 $aMathematical physics 606 $aDifference equations 606 $aFunctional equations 606 $aEngineering mathematics 606 $aMathematical Physics 606 $aDifference and Functional Equations 606 $aEngineering Mathematics 615 0$aMathematical physics. 615 0$aDifference equations. 615 0$aFunctional equations. 615 0$aEngineering mathematics. 615 14$aMathematical Physics. 615 24$aDifference and Functional Equations. 615 24$aEngineering Mathematics. 676 $a780 700 $aPapachristou$b Costas J.$0843154 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910763594403321 996 $aElements of Mathematical Analysis$93601287 997 $aUNINA LEADER 01009nam0 2200289 450 001 000037797 005 20250411092448.0 010 $a88-238-0682-8 100 $a20250411d2000----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aAnalisi dinamica dei sistemi aziendali$fEdoardo Mollona 210 $aMilano$cEgea$d2000 215 $a302 p.$d24 cm 225 2 $aBiblioteca dell'economia d'azienda. Economia e strategia aziendale 410 0$12001$aBiblioteca dell'economia d'azienda. Economia e strategia aziendale 500 10$aAnalisi dinamica dei sistemi aziendali$9516312 610 1 $aEconomia aziendale$aAziende 676 $a338$v23$9Produzione 700 1$aMollona,$bEdoardo$0147371 801 0$aIT$bUNIPARTHENOPE$c20250411$gREICAT$2UNIMARC 912 $a000037797 951 $aDISAE 512/278$b6719 ex St.Az.$cNAVA2 951 $aDISAE 512/279$b7410 ex St.Az.$cNAVA2 996 $aAnalisi dinamica dei sistemi aziendali$9516312 997 $aUNIPARTHENOPE