LEADER 03989nam 22006495 450 001 9910760297803321 005 20240724100735.0 010 $a3-031-34969-5 010 $a9783031349690$b(ebook) 024 7 $a10.1007/978-3-031-34969-0 035 $a(MiAaPQ)EBC30876565 035 $a(Au-PeEL)EBL30876565 035 $a(DE-He213)978-3-031-34969-0 035 $a(CKB)28804792700041 035 $a(EXLCZ)9928804792700041 100 $a20231108d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCyber Malware $eOffensive and Defensive Systems /$fedited by Iman Almomani, Leandros A. Maglaras, Mohamed Amine Ferrag, Nick Ayres 205 $a1st ed. 2024. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2024. 215 $a1 online resource (xxxvi, 280 pages) $cillustrations 225 1 $aSecurity Informatics and Law Enforcement,$x2523-8515 311 08$aPrint version: Almomani, Iman Cyber Malware Cham : Springer International Publishing AG,c2023 9783031349683 320 $aIncludes bibliographical references and index. 327 $aPart 1. Android Malware Analysis -- Chapter 1. A Deep Vision-based Multi-Class Classification System of Android Malware Apps -- Chapter 2. Android Malware detection based on network analysis and federated learning -- Chapter 3. ASParseV3: Auto Static Parser & Customizable Visualizer -- Part 2. Network Malware Analysis -- Chapter 4. Fast Flux Service Networks: Architecture, Characteristics and Detection Mechanisms -- Chapter 5. Efficient Graph-based Malware Detection using Minimized Kernel and SVM -- Chapter. 6 Deep Learning for Windows Malware Analysis -- Part 3. IoT Malware Analysis -- Chapter 7. Malware analysis for IoT and Smart AI-based Applications -- Chapter 8. A Multi-Class Classification Approach for IoT Intrusion Detection Based on Feature Selection and Oversampling -- Chapter 9. Malware Mitigation in Cloud Computing Architecture. 330 $aThis book provides the foundational aspects of malware attack vectors and appropriate defense mechanisms against malware. The book equips readers with the necessary knowledge and techniques to successfully lower the risk against emergent malware attacks. Topics cover protections against malware using machine learning algorithms, Blockchain and AI technologies, smart AI-based applications, automated detection-based AI tools, forensics tools, and much more. The authors discuss theoretical, technical, and practical issues related to cyber malware attacks and defense, making it ideal reading material for students, researchers, and developers. Presents theoretical, technical, and practical knowledge on defending against malware attacks; Covers malware applications using machine learning algorithms, Blockchain and AI, forensics tools, and much more; Includes perspectives from experts in cybersecurity at different institutions, including academia, research centers, and companies. 410 0$aSecurity Informatics and Law Enforcement,$x2523-8515 606 $aTelecommunication 606 $aComputer crimes 606 $aData protection 606 $aSecurity systems 606 $aCommunications Engineering, Networks 606 $aCybercrime 606 $aData and Information Security 606 $aSecurity Science and Technology 615 0$aTelecommunication. 615 0$aComputer crimes. 615 0$aData protection. 615 0$aSecurity systems. 615 14$aCommunications Engineering, Networks. 615 24$aCybercrime. 615 24$aData and Information Security. 615 24$aSecurity Science and Technology. 676 $a929.605 676 $a005.88 702 $aAlmomani$b Iman 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910760297803321 996 $aCyber Malware$93598668 997 $aUNINA