LEADER 01140nas 2200373- 450 001 996321758203316 005 20230123213018.0 011 $a2514-2178 035 $a(DE-599)ZDB2930867-7 035 $a(OCoLC)1014216627 035 $a(CKB)4100000000593553 035 $a(CONSER)--2018268613 035 $a(EXLCZ)994100000000593553 100 $a20171108a20179999 o-- c 101 0 $aeng 135 $aur|n||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 04$aThe international Journal of James Bond Studies 210 1$aLondon :$cFincham Press,$d2017- 215 $a1 online resource 300 $aRefereed/Peer-reviewed 517 1 $aJBS 517 1 $aIJJBS 606 $aCharacters and characteristics$2fast$3(OCoLC)fst00852293 608 $aPeriodicals.$2fast 610 $aEnglish Literature 615 7$aCharacters and characteristics. 712 02$aRoehampton University.$bDepartment of English and Creative Writing, 906 $aJOURNAL 912 $a996321758203316 996 $aThe international Journal of James Bond Studies$92257500 997 $aUNISA LEADER 03731nam 22005413 450 001 9910826507003321 005 20230629222718.0 010 $a1-68392-761-3 010 $a1-68392-762-1 035 $a(CKB)4100000012050014 035 $a(MiAaPQ)EBC6741210 035 $a(Au-PeEL)EBL6741210 035 $a(OCoLC)1273668618 035 $a(DE-B1597)654037 035 $a(DE-B1597)9781683927624 035 $a(BIP)081646298 035 $a(FR-PaCSA)88949168 035 $a(EXLCZ)994100000012050014 100 $a20211214d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDiscrete Mathematics with Cryptographic Applications $eA Self-Teaching Introduction 210 1$aBloomfield :$cMercury Learning & Information,$d2021. 210 4$d©2021. 215 $a1 online resource (382 pages) 311 $a1-68392-763-X 327 $tFrontmatter -- $tContents -- $tPreface -- $tChapter 1: A Brief Survey of Elementary Functions -- $tChapter 2: Propositional Algebra -- $tChapter 3: Naïve and Formal (Axiomatic) Set Theory -- $tChapter 4: Groups, Rings, and Fields -- $tChapter 5: Predicates and Quantifiers?Algebraic Theory -- $tChapter 6: Binary Relations and Relational Databases -- $tChapter 7: Combinatorics -- $tChapter 8: Elements of Number Theory -- $tChapter 9: Boolean Functions -- $tChapter 10: Hashing Functions and Cryptographic Maps -- $tChapter 11: Generating Polynomials and Inversion Formulas -- $tChapter 12: Systems of Representatives -- $tChapter 13: Boolean Algebras -- $tChapter 14: Combinatorial Circuits -- $tChapter 15: Complete Systems of Boolean Functions and Bases -- $tChapter 16: Introductory Graph Theory, Euler?s Formula, and Unbreakable Ciphers -- $tChapter 17: Trees and Digraphs -- $tChapter 18: Computations and Algorithms -- $tChapter 19: Finite Automata -- $tChapter 20: Introduction to Game Theory -- $tChapter 21: Information Theory and Coding -- $tChapter 22: Probability Theory with a Finite Sample Space and the Birthday Problem -- $tChapter 23: Turing Machines, P and NP Classes, and Other Models of Computation -- $tChapter 24: Answers and Solutions to Selected Exercises -- $tBibliography -- $tIndex 330 $aThis book covers discrete mathematics both as it has been established after its emergence since the middle of the last century and as its elementary applications to cryptography. It can be used by any individual studying discrete mathematics, finite mathematics, and similar subjects. Any necessary prerequisites are explained and illustrated in the book. As a background of cryptography, the textbook gives an introduction into number theory, coding theory, information theory, that obviously have discrete nature. FEATURES: Designed in a ?self-teaching? format, the book includes about 600 problems (with and without solutions) and numerous examples of cryptographyCovers cryptography topics such as CRT, affine ciphers, hashing functions, substitution ciphers, unbreakable ciphers, Discrete Logarithm Problem (DLP), and more. 517 $aDiscrete Mathematics with Cryptographic Applications 606 $aCOMPUTERS / Security / Cryptography$2bisacsh 610 $acomputer science. 610 $acryptography. 610 $adiscrete math. 610 $afinite. 610 $amathematics. 615 7$aCOMPUTERS / Security / Cryptography. 676 $a510 700 $aKheyfits$b Alexander I$01603551 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910826507003321 996 $aDiscrete Mathematics with Cryptographic Applications$93927961 997 $aUNINA LEADER 03345nam 22006975 450 001 9910760280303321 005 20240626162315.0 010 $a3-031-39489-5 010 $a9783031394898$b(ebook) 024 7 $a10.1007/978-3-031-39489-8 035 $a(MiAaPQ)EBC30847526 035 $a(Au-PeEL)EBL30847526 035 $a(DE-He213)978-3-031-39489-8 035 $a(CKB)28645349500041 035 $a(EXLCZ)9928645349500041 100 $a20231101h20232023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHypergroups /$fPaul-Hermann Zieschang 210 1$aCham :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (398 pages) 311 08$aPrint version: Zieschang, Paul-Hermann Hypergroups Cham : Springer International Publishing AG,c2023 9783031394881 320 $aIncludes bibliographical references and index. 327 $a1 Basic Facts -- 2 Closed Subsets -- 3 Elementary Structure Theory -- 4 Subnormality and Thin Residues -- 5 Tight Hypergroups -- 6 Involutions -- 7 Hypergroups with a Small Number of Elements -- 8 Constrained Sets of Involutions -- 9 Coxeter Sets of Involutions -- 10 Regular Actions of (Twin) Coxeter Hypergroups. 330 $aThis book provides a comprehensive algebraic treatment of hypergroups, as defined by F. Marty in 1934. It starts with structural results, which are developed along the lines of the structure theory of groups. The focus then turns to a number of concrete classes of hypergroups with small parameters, and continues with a closer look at the role of involutions (modeled after the definition of group-theoretic involutions) within the theory of hypergroups. Hypergroups generated by involutions lead to the exchange condition (a genuine generalization of the group-theoretic exchange condition), and this condition defines the so-called Coxeter hypergroups. Coxeter hypergroups can be treated in a similar way to Coxeter groups. On the other hand, their regular actions are mathematically equivalent to buildings (in the sense of Jacques Tits). A similar equivalence is discussed for twin buildings. The primary audience for the monograph will be researchers working in Algebra and/or Algebraic Combinatorics, in particular on association schemes. 606 $aHypergroups 606 $aGroup theory 606 $aDiscrete mathematics 606 $aGraph theory 606 $aGeometry 606 $aGroup Theory and Generalizations 606 $aDiscrete Mathematics 606 $aGraph Theory 606 $aGeometry 606 $aTeoria de grafs$2thub 606 $aGeometria$2thub 608 $aLlibres electrònics$2thub 615 0$aHypergroups. 615 0$aGroup theory. 615 0$aDiscrete mathematics. 615 0$aGraph theory. 615 0$aGeometry. 615 14$aGroup Theory and Generalizations. 615 24$aDiscrete Mathematics. 615 24$aGraph Theory. 615 24$aGeometry. 615 $aTeoria de grafs 615 7$aGeometria 676 $a512.2 700 $aZieschang$b Paul-Hermann$f1953-$061061 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910760280303321 996 $aHypergroups$93598747 997 $aUNINA