LEADER 09328nam 22004573 450 001 9910749001203321 005 20231020080318.0 010 $a1-394-18638-X 010 $a1-394-18639-8 035 $a(CKB)28519128500041 035 $a(MiAaPQ)EBC30793009 035 $a(Au-PeEL)EBL30793009 035 $a(EXLCZ)9928519128500041 100 $a20231020d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNanodevices for Integrated Circuit Design 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$dİ2023. 215 $a1 online resource (304 pages) 311 $a9781394185788 327 $aCover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgements -- Chapter 1 Growth of Nano-Wire Field Effect Transistor in 21st Century -- 1.1 Introduction -- 1.2 Initial Works on Nanowire Field-Effect-Transistors (NW-FET) -- 1.2(A) Theoretical and Simulation Studies on Nanowire FET (NW-FET) -- 1.2(B) Fabrication of Nanowire Field-Effect-Transistor (NW-FET) -- 1.3 Application of Nanowire Field-Effect-Transistors (NW-FET) -- 1.4 Conclusion -- References -- Chapter 2 Impact of Silicon Nanowire-Based Transistor in IC Design Perspective -- 2.1 Introduction -- 2.2 Nanoscale Devices -- 2.2.1 Carbon Nanostructures -- 2.2.2 Nanoelectromechanical Systems -- 2.2.3 Graphene-Based Transistors -- 2.2.4 Silicon Nanowire Based Devices -- 2.3 Nanowire Heterostructures and Silicon Nanowires -- 2.3.1 Characteristics of SiNWs -- 2.3.2 Fabrication -- 2.3.3 Applications of SiNWs -- 2.4 Performance Analysis of Si Nanowire with SOI FET -- 2.5 Conclusion -- References -- Chapter 3 Kink Effect in Field Effect Transistors: Different Models and Techniques -- 3.1 Introduction -- 3.2 Techniques of Kink Effect -- 3.2.1 Current-Voltage Technique -- 3.2.2 Pulsed I-V Technique -- 3.2.3 Capacitance-Voltage Technique -- 3.3 Different Models of Kink Effect -- 3.4 Kink Effect in MOS Capacitors -- 3.4.1 Incomplete Ionization Model -- 3.4.2 Simulation of the Kink Effect in MOS Capacitor -- 3.4.2.1 Effect of the Variation of Activation Energy -- 3.4.2.2 Effect of the Variation of Traps Density -- 3.4.2.3 Effect of the Variation of Capture Cross Section -- 3.4.3 Comparison Between Experimental and Simulation Results -- 3.4.3.1 Hysteresis Effect on the C-V Characteristics -- 3.4.3.2 Proof of the Origin of Kink Effect -- 3.5 Conclusion -- References. 327 $aChapter 4 Next Generation Molybdenum Disulfide FET: Its Properties, Evaluation, and Its Applications -- 4.1 Introduction of Two-Dimensional Materials -- 4.2 Evaluation of 2D-Materials -- 4.3 Overview of MoS2 -- 4.3.1 Why MoS2 -- 4.3.2 MoS2 Structured Design -- 4.4 Properties of MoS2 -- 4.4.1 Bulk Characteristics -- 4.4.2 Electrical and Optical Characteristics -- 4.4.2.1 BandGap -- 4.4.2.2 Photoluminescence Spectra -- 4.4.2.3 Injection of Electrons -- 4.4.2.4 Transistor -- 4.4.3 Mechanical Properties -- 4.4.3.1 Valleytronics -- 4.4.3.2 Optical Transitions -- 4.4.3.3 Spin-Orbit Valence Band -- 4.5 Fabrication of MoS2 -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Intercalation -- 4.5.3 Solvent Exfoliation -- 4.5.4 Chemical Vapor Deposition (CVD) -- 4.6 Applications of MoS2 -- 4.6.1 Solid Lubricants -- 4.6.2 Electronic Applications -- 4.6.3 Field-Effect Transistor -- 4.6.4 Switching Transistor -- 4.6.5 Nano-Structures -- 4.6.6 Biosensors -- 4.6.7 FET-Based Biosensors -- 4.7 Comparison of Other 2D Materials with MoS2 -- 4.8 Conclusion -- References -- Chapter 5 Impact of Working Temperature on the ION/IOFF Ratio of a Hetero Step-Shaped Gate TFET With Improved Ambipolar Conduction -- 5.1 Introduction -- 5.2 Device Structure -- 5.3 Results and Discussion -- 5.4 Conclusion -- References -- Chapter 6 Analysis of RF with DC and Linearity Parameter and Study of Noise Characteristics of Gate-All-Around Junctionless FET (GAA-JLFET) and Its Applications -- 6.1 Introduction -- 6.2 Structure of GAA-JLFET -- 6.3 Results and Discussion -- 6.3.1 DC Analysis -- 6.3.2 RF Analysis -- 6.3.3 Linearity Analysis -- 6.3.4 Noise Analysis -- 6.3.4.1 Thermal Noise -- 6.3.4.2 Flicker Noise -- 6.3.4.3 Gate-Induced Thermal Noise -- 6.4 Applications -- 6.5 Conclusion -- References. 327 $aChapter 7 E-Mode-Operated Advanced III-V Heterostructure Quantum Well Devices for Analog/RF and High-Power Switching Applications -- 7.1 Silicon Era and Scaling Limit -- 7.2 III-V GaN-Based Compound Semiconductors -- 7.3 Band-Gap Engineering -- 7.4 Quantum Well -- 7.5 Polarization in GaN Devices and their Specific Properties -- 7.6 Strain and Lattice Mismatch in III-N Semiconductors -- 7.7 High Electron Mobility Transistors (HEMTs) -- 7.8 Two-Dimensional Electron Gas (2DEG) -- 7.9 AlGaN/GaN Heterostructure HEMT -- 7.9.1 Scope of the III-V Heterostructure Quantum Well Device -- 7.9.2 Problem Statement -- 7.9.3 Motivation for the Present III-V Heterostructure Quantum Well Device -- 7.10 Enhancement Mode GaN DH-HEMTs Device With Boron-Doped Gate Cap Layer -- 7.10.1 Device Architecture -- 7.11 High-K Gate Dielectric III-Nitride GaN MIS-HEMT Devices -- 7.11.1 Device Architecture -- 7.11.2 Boost Converter Circuit Application -- 7.12 Conclusion -- References -- Chapter 8 Design of FinFET as Biosensor -- 8.1 Introduction -- 8.2 Existing FET Based Biosensors -- 8.2.1 TGRC-MOSFET as a Biosensor -- 8.2.2 An N-Type Nanogap Embedded Polarity Biased Based DM- EDTFET Biosensor -- 8.2.3 Cavity on Source Charge Plasma TFET-Based Biosensor -- 8.2.4 Dielectric Modulated Double Gate Junctionless MOSFET Biosensor -- 8.2.5 A Double Gate Dielectric Modulated Junctionless Tunnel Field-Effect Transistor as a Biosensor -- 8.3 Performance Parameters of Biosensors -- 8.4 FinFET Designed as Biosensor Using Visual TCAD -- 8.5 Biosensors in Disease Detection -- 8.6 Conclusion -- 8.7 Acknowledgement -- References -- Chapter 9 Biodegradable and Flexible Electronics: Types and Applications -- 9.1 Introduction -- 9.2 Biodegradable and Flexible Electronics -- 9.3 Types of Materials Used for Biodegradable and Flexible Electronics -- 9.3.1 Materials for Biodegradable Electronics. 327 $a9.3.2 Materials for Flexible Electronics -- 9.4 Applications of Biodegradable and Flexible Electronic Devices -- 9.4.1 Sensing and Diagnosis -- 9.4.2 Energy Storage -- 9.4.3 Smart Textiles -- 9.4.3.1 Chameleonic Textiles -- 9.4.3.2 Intelligent Textile Sutures -- 9.4.3.3 Textile-Based Flexible and Printable Material -- 9.4.4 Wearable Electronics -- 9.5 Conclusion -- References -- Chapter 10 Novel Parameters Extraction Method of High-Speed PIN Diode for Power Integrated Circuit -- 10.1 Introduction -- 10.2 Review of the Technology and Physics of Power PIN Diodes -- 10.2.1 Technological Aspect -- 10.2.2 Physical Aspect -- 10.3 State of the Art of PIN Diode Parameters Extraction -- 10.4 Proposed Method -- 10.4.1 Principle -- 10.4.2 Doping Profile Parameters Identification -- 10.4.2.1 Experimental Method -- 10.4.2.2 Model Description -- 10.4.2.3 Parameters Extraction Procedure -- 10.4.3 Ambipolar Lifetime Estimation -- 10.4.3.1 Experimental Method -- 10.4.3.2 Numerical Analysis of OCVD Method -- 10.4.3.3 Parameters Extraction Procedure -- 10.5 Validation -- 10.6 Conclusion -- References -- Chapter 11 Edge AI - A Promising Technology -- 11.1 Introduction -- 11.2 Deep Neural Networks -- 11.2.1 Multi-Layer Perceptrons (MLP) -- 11.2.2 Convolutional Neural Networks (CNNs) -- 11.2.3 Recurrent Neural Networks (RNNs) -- 11.3 Model Compression Techniques for Deep Learning -- 11.3.1 Pruning -- 11.3.2 Quantization -- 11.3.3 Low Rank Factorization -- 11.3.4 Knowledge Distillation -- 11.4 Computing Infrastructures -- 11.4.1 GPU Accelerator -- 11.4.2 FPGA Accelerator -- 11.5 Conclusion -- References -- Chapter 12 Tunable Frequency Oscillator -- 12.1 Introduction -- 12.2 Experimental Methods and Materials -- 12.2.1 Varactor Diode -- 12.2.2 Active Inductor -- 12.3 Results and Discussion -- 12.4 Conclusion -- References. 327 $aChapter 13 Introduction to Nanomagnetic Materials for Electronic Devices: Fundamental, Synthesis, Classification and Applications -- 13.1 Introduction - An Explanation of the Process and Approach -- 13.2 Nanomaterials -- 13.2.1 Surface to Volume Ratio -- 13.2.2 Quantum Confinement Effect -- 13.3 Synthesis and Characterization of Nano Materials -- 13.4 Characterization Technique for Structural Analysis -- 13.5 Magnetic Materials -- 13.6 Classification of Magnetic Materials -- 13.7 Magnetic Properties -- 13.8 Ferrites -- 13.8.1 Classification and Types of Ferrites -- 13.8.2 Spinel Ferrite -- 13.8.3 Garnet -- 13.8.4 Ortho Ferrite Structure -- 13.8.5 Magnetoplumbite Structure -- 13.8.6 Hexagonal Ferrites -- 13.8.7 Classification of Hexaferrite -- 13.9 Applications of Magnetic Materials -- 13.10 Conclusion -- References -- About the Editors -- Index -- EULA. 700 $aTripathi$b Suman Lata$01341016 701 $aKumar$b Abhishek$0977677 701 $aRao$b K. Srinivasa$0542237 701 $aMudimela$b Prasantha R$01433057 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910749001203321 996 $aNanodevices for Integrated Circuit Design$93578266 997 $aUNINA