LEADER 10593nam 2200505 450 001 9910747099803321 005 20231020211242.0 010 $a1-394-16716-4 010 $a1-394-16715-6 035 $a(MiAaPQ)EBC30767486 035 $a(Au-PeEL)EBL30767486 035 $a(EXLCZ)9928447245400041 100 $a20231020d2024 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aElectroceramics for High Performance Supercapicitors /$fedited by Inamuddin, Tariq Altalhi and Sayed Mohammed Adnan 205 $aFirst edition. 210 1$aHoboken, NJ :$cJohn Wiley & Sons, Inc.,$d[2024] 210 4$d©2024 215 $a1 online resource (0 pages) 311 08$aPrint version: Altalhi, Tariq Electroceramics for High Performance Supercapicitors Newark : John Wiley & Sons, Incorporated,c2023 9781394166251 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Lead-Free Energy Storage Ceramics -- 1.1 Introduction -- 1.2 Dielectric Capacitor and Energy Storage -- 1.3 Energy Storage of Dielectric Ceramics Free of Lead -- 1.4 Conclusion and Outlooks -- Acknowledgments -- References -- Chapter 2 Lead-Based Ceramics for High-Performance Supercapacitors -- 2.1 Introduction -- 2.2 General Idea of Ceramics for Supercapacitors -- 2.2.1 Metallic Oxide Ceramics for Supercapacitors -- 2.2.2 Binary Metal Oxides -- 2.2.2.1 Ceramics of Spinal Oxide Material -- 2.2.2.2 Barium Titanate Ceramics -- 2.2.3 Multimetal Oxidized Ceramics -- 2.2.4 Metal Hydroxide-Type Ceramics -- 2.3 Principle Involved in Electroceramics -- 2.3.1 Electrostatic Capacitor -- 2.4 Lead-Based Ceramics -- 2.4.1 Lead-Based Ferroelectrics -- 2.4.2 Lead-Based Relaxor Ferroelectrics -- 2.4.3 Lead-Based Anti-Ferroelectrics -- 2.5 Characteristics of Lead-Based Ceramics -- 2.5.1 Characteristics of Lead Zirconate Titanate -- 2.5.2 Characteristics of Lead Magnesium Niobate -- 2.5.3 Characteristics of Lead Zinc Niobate -- 2.6 Conclusion and Perspectives -- 2.6.1 Up-to-Date Sintering and Molding Process -- 2.6.2 Microscopical and Flexible Ceramics Electrode Materials -- 2.6.3 Improvement of Efficiency of the Ceramic Electrode Materials -- References -- Chapter 3 Ceramic Films for High-Performance Supercapacitors -- 3.1 Introduction -- 3.2 Energy Storage Principles -- 3.3 Factors Optimizing Energy Density -- 3.3.1 The Intrinsic Band Gap (Eg) -- 3.3.2 Electrical Microstructure -- 3.3.3 Density and Grain Size -- 3.4 Ceramics for Supercapacitors -- 3.4.1 Metal Oxide Ceramics -- 3.4.2 Multielemental Oxides -- 3.5 Conclusions and Outlook -- References -- Chapter 4 Ceramic Multilayers and Films for High-Performance Supercapacitors -- 4.1 Introduction. 327 $a4.2 Fundamentals of Energy Storage in Electroceramics -- 4.2.1 Electrostatic Capacitors -- 4.2.2 Important Factors Designed for Assessing Energy Storage Characteristics -- 4.3 Important Factors for Maximizing Energy Density -- 4.3.1 Intrinsic Band Gap -- 4.3.2 Electrical Microstructure -- 4.4 Different Types of Electroceramics Capacitors for Energy Storage -- 4.4.1 Pb-Doped Ceramics -- 4.4.1.1 Pb-Doped RFEs -- 4.4.1.2 Lead-Doped Antiferroelectrics -- 4.4.2 Pb-Free Ceramics -- 4.4.2.1 BaTiO3-Based Ceramics -- 4.4.2.2 K0.5Na0.5NbO3-Doped Ceramics -- 4.4.2.3 Na0.5Bi0.5TiO3-Doped Ceramics -- 4.4.2.4 AgNbO3-Based Ceramics -- 4.5 Application of Electroceramics Supercapacitor -- 4.6 Conclusion -- References -- Chapter 5 Superconductors for Energy Storage -- 5.1 Introduction -- 5.1.1 Background -- 5.1.2 Superconducting Properties -- 5.1.3 Synthetic Methodology -- 5.2 Low-Temperature Superconductors -- 5.2.1 Nb-Ti-Based LTS -- 5.2.2 Nb3Sn-Based LTS -- 5.3 High-Temperature Superconductors -- 5.3.1 Cuprate-Based HTS -- 5.3.2 Iron-Based Pnictides (Pn) and Chalcogenides (Ch) as HTS -- 5.3.3 MgB2-Based HTS -- 5.3.4 Hydrides-Based HTS -- 5.4 Superconductors in Energy Applications -- 5.4.1 Superconducting Magnetic Energy Storage -- 5.4.1.1 Use of SMES in the Power Grid: Flexible AC Transmission System (FACTS) -- 5.4.1.2 Use of SMES as Fault Current Limiters -- 5.4.2 Use of Superconductors in Accelerator System -- 5.4.3 Use of Superconductors in Fusion Technologies -- 5.4.4 Challenges Faced During Superconducting Energy Storage -- 5.5 Conclusion -- Acknowledgments -- References -- Chapter 6 Key Factors for Optimizing Energy Density in High-Performance Supercapacitors -- 6.1 Supercapacitor -- 6.2 Electric Double-Layer Capacitor -- 6.3 Pseudo-Capacitor -- 6.4 Hybrid Supercapacitor -- 6.4.1 Electrochemical Performance -- 6.4.2 Capacitance -- 6.4.3 Specific Capacitance. 327 $a6.4.4 Energy Density -- 6.4.5 Power Density -- 6.4.6 Cyclic Stability -- 6.5 The Energy Density of Supercapacitor -- 6.5.1 Optimization of High Energy Density -- 6.5.1.1 Pore Size -- 6.5.1.2 Surface Area -- 6.5.1.3 Grain Size -- 6.5.1.4 Functional Groups -- 6.5.1.5 Band Gap -- 6.5.2 Effect of Voltage -- 6.5.3 Asymmetric Supercapacitors -- 6.5.4 Negative Electrode Materials -- 6.5.5 Positive Electrode Materials -- 6.5.6 Battery-Supercapacitor Hybrid (Bsh) Device -- 6.5.6.1 Lithium-Ion BSH -- 6.5.6.2 Na-Ion BSH -- 6.5.6.3 Acidic BSH -- 6.5.6.4 Alkaline BSH -- 6.6 Future Outlook -- 6.7 Conclusion -- References -- Chapter 7 Optimization of Anti-Ferroelectrics -- 7.1 Introduction -- 7.2 Energy Storage Properties -- 7.3 Antiferroelectric for Energy Storage -- 7.3.1 Lead-Based Antiferroelectric -- 7.3.2 Lead-Free Antiferroelectric -- 7.3.3 Challenges -- 7.4 Explosive Energy Conversion -- 7.5 Energy Storage and High-Power Capacitors -- 7.6 Thermal-Electric Energy Interconversion -- 7.7 Optimization -- 7.7.1 Phase Structure Engineering -- 7.7.1.1 Planning Phase in a Structural Engineering Project -- 7.7.1.2 Design Phase -- 7.7.1.3 Construction Phase -- 7.7.2 Grain Size Engineering -- 7.7.3 Domain Engineering -- 7.7.3.1 Phase -- 7.7.3.2 Domain Analysis -- 7.7.3.3 Domain Design -- 7.7.4 Doping -- 7.8 Conclusion -- References -- Chapter 8 Super Capacitive Performance Assessment of Mixed Ferromagnetic Iron and Cobalt Oxides and Their Polymer Composites -- 8.1 Introduction -- 8.1.1 Electrolyte -- 8.1.2 Separator -- 8.1.3 Current Collector -- 8.1.4 Supercapacitor Electrode Materials -- 8.2 Ferromagnetic Electrode Materials -- 8.3 Mixed Ferromagnetic Iron and Cobalt Oxides -- 8.4 Conclusion -- References -- Chapter 9 Transition Metal Oxides with Broaden Potential Window for High-Performance Supercapacitors -- 9.1 Introduction of Transition Metal Oxides (TMOs). 327 $a9.2 Redox-Based Materials -- 9.3 Conducting Polymers -- 9.4 Electroactive Metal Oxides or Transition Metal Oxides (TMOs) as Electrodes for SCs -- 9.4.1 MnO2 as Electrode Material for SCs -- 9.4.2 Pseudo-Capacitive Behavior of á-MnO2 by Cation Insertion -- 9.4.3 Na0.5MnO2 Nanosheet Assembled Nanowall Arrays for ASCs -- 9.4.4 FeOx/FeOOH Material as Negative Electrode -- 9.4.5 Carbon-Stabilized Fe3O4@C Nanorod Arrays as an Efficient Anode for SCs -- 9.4.6 Electrochemical Performance of Fe3O4 and Fe3O4@C NRAs as Anode -- 9.4.7 Construction of Na0.5MnO2//Fe3O4@C ASC and Electrochemical Performance -- 9.4.8 Highly Efficient NiCo2S4@Fe2O3//MnO2 ASC -- 9.4.9 Bi2O3 as Negative Electrode with Broaden Potential Window -- 9.5 Conclusion -- References -- Chapter 10 Aqueous Redox-Active Electrolytes -- 10.1 Introduction -- 10.2 Electrolyte Requirements for High-Performance Supercapacitors -- 10.2.1 Conductivity -- 10.2.2 Salt Effect -- 10.2.3 Solvent Effect -- 10.2.4 Electrochemical Stability -- 10.2.5 Thermal Stability -- 10.3 Effect of the Electrolyte on Supercapacitor Performance -- 10.3.1 Aqueous Electrolytes -- 10.3.2 Acidic Electrolytes -- 10.3.2.1 Sulfuric Acid Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.2.2 H2SO4 Electrolyte-Based Hybrid Supercapacitors -- 10.3.3 Alkaline Electrolytes -- 10.3.3.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.3.2 Alkaline Electrolyte-Based Hybrid Supercapacitors -- 10.3.4 Neutral Electrolyte -- 10.3.4.1 Neutral Electrolyte-Based EDLC and Pseudocapacitors -- 10.3.4.2 Neutral Electrolyte-Based Hybrid Supercapacitors -- 10.4 Conclusion and Future Research Directions -- References -- Chapter 11 Strategies for Improving Energy Storage Properties -- 11.1 Introduction -- 11.2 Result and Discussion -- 11.2.1 Solid-State Batteries -- 11.2.2 Ultracapacitor -- 11.2.3 Flywheels. 327 $a11.2.4 Pumped Hydroelectric Storage Dams -- 11.2.5 Rail Energy Storage -- 11.2.6 Compressed Storage of Air -- 11.2.7 Liquid Air Energy Storage -- 11.2.8 Pumped Heat Electrical Storage -- 11.2.9 Redox Flow Batteries -- 11.2.10 Superconducting Magnetic Energy Storage -- 11.2.11 Methane -- 11.3 Energy Storage Systems Applications -- 11.3.1 Mills -- 11.3.2 Homes -- 11.3.3 Power Stations and Grid Electricity -- 11.3.4 Air Conditioning -- 11.3.5 Transportation -- 11.3.6 Electronics -- 11.4 Energy Storage Systems Economics -- 11.5 Impacts on Environment by Electricity Storage -- 11.6 Future Prospective -- 11.7 Conclusion -- References -- Chapter 12 State-of-the-Art in Electroceramics for Energy Storage -- 12.1 Introduction -- 12.2 Electroceramics for Energy-Storing Devices -- 12.2.1 Bulk-Based Ceramics -- 12.2.2 Lead-Free Ceramics -- 12.3 Ceramic Multilayers and Films -- 12.4 Ceramic Films for Energy Storage in Capacitors -- 12.5 Conclusion -- References -- Chapter 13 Lead-Free Ceramics for High Performance Supercapacitors -- 13.1 Introduction -- 13.2 Ceramics -- 13.2.1 General Classification of Ceramics -- 13.2.1.1 Ceramic-Based Capacitors -- 13.3 Types of Ceramic Capacitors -- 13.4 Overview of Ceramics for Supercapacitors -- 13.4.1 Metal Oxide Ceramics for Supercapacitors -- 13.4.2 Multi-Elemental Oxide Ceramics for Supercapacitors -- 13.4.2.1 Spinel Oxide Ceramics -- 13.5 Lead-Based Ceramics -- 13.6 Lead-Free Ceramics -- 13.6.1 Analysis of Pb-Free Hybrid Materials for Energy Conversion -- 13.7 Comparison of Pb-Based Ceramics and Pb-Free Ceramics -- 13.8 Conclusion -- References -- Index -- EULA. 606 $aElectronic ceramics 606 $aSupercapacitors 615 0$aElectronic ceramics. 615 0$aSupercapacitors. 676 $a621.381 702 $aInamuddin 702 $aAltalhi$b Tariq 702 $aAdnan$b Sayed Mohammed 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910747099803321 996 $aElectroceramics for High Performance Supercapicitors$93574919 997 $aUNINA LEADER 05485nam 2200673 a 450 001 9910783901103321 005 20230617005759.0 010 $a1-136-97671-X 010 $a1-280-30859-1 010 $a9786610308590 010 $a0-203-49513-6 035 $a(CKB)1000000000248379 035 $a(EBL)200852 035 $a(OCoLC)437061846 035 $a(SSID)ssj0000357641 035 $a(PQKBManifestationID)11263411 035 $a(PQKBTitleCode)TC0000357641 035 $a(PQKBWorkID)10359516 035 $a(PQKB)10714880 035 $a(MiAaPQ)EBC200852 035 $a(Au-PeEL)EBL200852 035 $a(CaPaEBR)ebr10162518 035 $a(CaONFJC)MIL761278 035 $a(EXLCZ)991000000000248379 100 $a20040316d2003 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCauses and consequences of word structure$b[electronic resource] /$fby Jennifer Hay 210 $aNew York $cRoutledge$d2003 215 $a1 online resource (257 p.) 225 1 $aOutstanding dissertations in linguistics 300 $aOriginally presented as author's thesis (Ph. D.)--Northwestern University, 2000. 311 $a0-415-86140-3 311 $a0-415-96788-0 320 $aIncludes bibliographical references (p. 219-232) and index. 327 $aCover; Causes and Consequences of word Structure; Copyright; Contents; List of Figures; List of Tables; Preface; Acknowledgments; 1. Introduction; 1.1 Modeling Speech Perception; 1.2 Modeling Morphological Processing; 1.3 Lexical Effects; 1.3.1 Phonological Transparency; 1.3.2 Temporality; 1.3.3 Relative Frequency; 1.4 Prelexical Effects; 1.4.1 Metrical Structure; 1.4.2 Possible Word Constraint; 1.4.3 Probabilistic Phonotactics; 1.5 Consequences; 1.5.1 Words; 1.5.2 Affixes; 1.6 Some Disclaimers; 1.7 Organization of the Book; 2. Phonotactics and Morphology in Speech Perception 327 $a2.1 Phonotactics in Speech Perception2.2 Neural Networks and Segmentation; 2.3 Experiment 1: a Simple Recurrent Network; 2.3.1 Network Architecture; 2.3.2 Training Data; 2.3.3 Results and Discussion; 2.4 Phonotactics and Morphological Decomposition; 2.5 Experiment 2: Phonotactic Decomposition in Morphology; 2.5.1 Materials; 2.5.2 Methodology; 2.5.3 Results and Discussion; 2.6 Summary; 3. Phonotactics and the Lexicon; 3.1 Experiment 3: Phonotactics and Morphological Complexity; 3.1.1 Materials and Methodology; 3.1.2 Results and Discussion; 3.2 Calculating Juncturehood; 3.3 Prefixes 327 $a3.3.1 Prefixedness3.3.2 Semantics; Semantic Transparency Ratings: Wurm (1997); Polysemy; Degree of Semantic Drift; 3.3.3 Lexical Frequency; 3.4 Suffixes; 3.4.1 Semantics; Degree of Semantic Drift; Polysemy; 3.4.2 Lexical Frequency; 3.4.3 Summary: Suffixes and Junctural Phonotactics; 3.5 Summary; 4. Relative Frequency and Morphological Decomposition; 4.1 Relative Frequency in Morphology; 4.2 Surface Frequency and Decomposition; 4.3 Base Frequency and Decomposition; 4.4 Models of Morphological Processing; 4.4.1 Bybee's ""morphology as Connections"" Model 327 $a4.4.2 Caramazza's ""augmented Addressed Morphology""4.4.3 Marslen-wilson's ""direct Access Model""; 4.4.4 Baayen(1992); 4.4.5 Frauenfelder and Schreuder (1992); 4.4.6 Schreuder and Baayen's Morphological Meta-model; 4.4.7 Summary; 4.5 Experiment 4: Relative Frequency and Morphological Complexity; 4.5.1 Materials and Methodology; 4.5.2 Results and Discussion; 4.6 Experiment 5: Relative Frequency and Pitch Accent Placement; 4.6.1 Materials and Methodology; 4.6.2 Results; 4.6.3 Discussion; 4.7 Summary; 5. Relative Frequency and the Lexicon; 5.1 Relative Frequency Distributions in Affixed Words 327 $a5.2 Relative Frequency in Prefixed Forms5.2.1 Relative Frequency and Polysemy in Prefixed Forms; 5.2.2 Relative Frequency and Semantic Drift of Prefixed Forms; 5.3 Relative Frequency in Suffixed Forms; 5.3.1 Relative Frequency and Semantic Drift in Suffixed Forms; 5.3.2 Relative Frequency and Polysemy in Suffixed Forms; 5.4 Summary; 5.5 Consequences; 6. Relative Frequency and Phonetic Implementation; 6.1 Experiment 6: Relative Frequency and /tadeletion; 6.1.1 Materials; 6.1.2 Measurement and Analysis; 6.1.3 Results and Discussion; 6.2 Discussion; 7. Morphological Productivity 327 $a7.1 Measuring Productivity 330 $aThis book explores the effect of speech perception strategies upon morphological structure. Using connectionist modelling, perception and production experiments, and calculations over lexical, Jennifer Hay investigates the role of two factors known to be relevant to speech perceptions: phonotactics and lexical frequency.Hay demonstrates that low-probability phoneme transitions across morpheme boundaries exert a considerable force toward the maintenance of complex words, and argues that the relative frequency of the derived form and the base significantly affects the decomposability of comp 410 0$aOutstanding dissertations in linguistics. 606 $aGrammar, Comparative and general$xMorphology 606 $aSpeech perception 615 0$aGrammar, Comparative and general$xMorphology. 615 0$aSpeech perception. 676 $a415 700 $aHay$b Jennifer$0291443 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783901103321 996 $aCauses and consequences of word structure$93828427 997 $aUNINA