LEADER 01042nam a22002411i 4500 001 991001934889707536 005 20040110170924.0 008 040407s1940 it |||||||||||||||||ita 035 $ab12845681-39ule_inst 035 $aARCHE-082530$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a701 100 1 $aBodmer, Enrico$0216858 245 13$aLe note marginali di Agostino Carracci nell'edizione del Vasari del 1568 /$cEnrico Bodmer 260 $aArezzo :$bDalla Casa Vasari,$c1940 300 $a1 v. ;$c28 cm 500 $aEstr. da: Il Vasari: rivista d'arte e di studi vasariani, a. 10(1939), fasc. 3-4 907 $a.b12845681$b02-04-14$c16-04-04 912 $a991001934889707536 945 $aLE009 ARTE MISC. 8/2 (Fondo Bottari)$g1$iLE009-3483/2$lle009$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i1340068x$z16-04-04 996 $aNote marginali di Agostino Carracci nell'edizione del Vasari del 1568$9297701 997 $aUNISALENTO 998 $ale009$b16-04-04$cm$da $e-$fita$git $h3$i1 LEADER 05387nam 22006375 450 001 9910746979103321 005 20251008153637.0 010 $a3-031-40258-8 024 7 $a10.1007/978-3-031-40258-6 035 $a(CKB)5840000000405959 035 $a(DE-He213)978-3-031-40258-6 035 $a(EXLCZ)995840000000405959 100 $a20230929d2023 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Invitation to Mathematical Biology /$fby David G Costa, Paul J Schulte 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (IX, 124 p. 71 illus., 66 illus. in color.) 311 08$a3-031-40257-X 327 $aPreface -- 1 Introduction -- 2 Exponential Growth and Decay -- 2.1 Exponential Growth -- 2.2 Exponential Decay -- 2.3 Summary -- 2.4 Exercises -- 2.5 References- 3 Discrete Time Models -- 3.1 Solutions of the discrete logistic -- 3.2 Enhancements to the Discrete Logistic Function -- 3.3 Summary -- 3.4 Exercises -- 3.5 References- 4 Fixed Points, Stability, and Cobwebbing -- 4.1 Fixed Points and Cobwebbing -- 4.2 Linear Stability Analysis -- 4.3 Summary -- 4.4 Exercises -- 4.5 References- 5 Population Genetics Models -- 5.1 Two Phenotypes Case -- 5.2 Three Phenotypes Case -- 5.3 Summary -- 5.4 Exercises -- 5.5 References- 6 Chaotic Systems -- 6.1 Robert May?s Model -- 6.2 Solving the Model -- 6.3 Model Fixed Points -- 6.4 Summary -- 6.5 Exercises -- 6.6 References- 7 Continuous Time Models -- 7.1 The Continuous Logistic Equation -- 7.2 Equilibrium States and their Stability -- 7.3 Continuous Logistic Equation with Harvesting -- 7.4 Summary -- 7.5 Exercises -- 7.6 References- -- 8 Organism-Organism Interaction Models.-8.1 Interaction Models Introduction -- 8.2 Competition -- 8.3 Predator-Prey -- 8.4 Mutualism -- 8.5 Summary -- 8.6 Exercises -- 8.7 References- 9 Host-Parasitoid Models -- 9.1 Beddington Model -- 9.2 Some Solutions of the Beddington Model -- 9.3 MATLAB Solution for the Host-Parasitoid Model -- 9.4 Python Solution for the Host-Parasitoid Model -- 9.5 Summary -- 9.6 Exercises -- 9.7 References- 10 Competition Models with Logistic Term -- 10.1Addition of Logistic Term to Competition Models -- 10.2 Predator-Prey-Prey Three Species Model -- 10.3Predator-Prey-Prey Model Solutions -- 10.4 Summary -- 10.5Exercises -- 10.6References- 11 Infectious Disease Models -- 11.1 Basic Compartment Modeling Approaches -- 11.2SI Model -- 11.3SI model with Growth in S -- 11.4 Applications using Mathematica -- 11.5 Applications using MATLAB -- 11.6 Summary -- 11.7 Exercises -- 11.8 References- 12 Organism Environment Interactions -- 12.1 Introduction to Energy Budgets -- 12.2 Radiation -- 12.3 Convection -- 12.4 Transpiration -- 12.5 Total Energy Budget -- 12.6 Solving the Budget: Newton?s Method for Root Finding -- 12.7 Experimenting with the Leaf Energy Budget -- 12.8 Summary -- 12.9 Exercises -- 12.10 References- 13 Appendix 1: Brief Review of Differential Equations in Calculus- 14 Appendix 2: Numerical Solutions of ODEs- 15 Appendix 3: Tutorial on Mathematica- 16 Appendix 4: Tutorial on MATLAB- 17 Appendix 5: Tutorial on Python Programming- Index. 330 $aThe textbook is designed to provide a "non-intimidating" entry to the field of mathematical biology. It is also useful for those wishing to teach an introductory course. Although there are many good mathematical biology texts available, most books are too advanced mathematically for most biology majors. Unlike undergraduate math majors, most biology major students possess a limited math background. Given that computational biology is a rapidly expanding field, more students should be encouraged to familiarize themselves with this powerful approach to understand complex biological phenomena. Ultimately, our goal with this undergraduate textbook is to provide an introduction to the interdisciplinary field of mathematical biology in a way that does not overly terrify an undergraduate biology major, thereby fostering a greater appreciation for the role of mathematics in biology. 606 $aBiology 606 $aMedical sciences 606 $aBioinformatics 606 $aBiomathematics 606 $aPopulation genetics 606 $aSystem theory 606 $aBiological Sciences 606 $aHealth Sciences 606 $aComputational and Systems Biology 606 $aMathematical and Computational Biology 606 $aPopulation Genetics 606 $aComplex Systems 615 0$aBiology. 615 0$aMedical sciences. 615 0$aBioinformatics. 615 0$aBiomathematics. 615 0$aPopulation genetics. 615 0$aSystem theory. 615 14$aBiological Sciences. 615 24$aHealth Sciences. 615 24$aComputational and Systems Biology. 615 24$aMathematical and Computational Biology. 615 24$aPopulation Genetics. 615 24$aComplex Systems. 676 $a570 700 $aCosta$b David G$4aut$4http://id.loc.gov/vocabulary/relators/aut$0477016 702 $aSchulte$b Paul J$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910746979103321 996 $aAn Invitation to Mathematical Biology$94456245 997 $aUNINA