LEADER 01067nam0-2200337 --450 001 9910745096903321 005 20231013102118.0 010 $a88-222-5272-1 100 $a20231013d2003----kmuy0itay5050 ba 101 0 $aita$ager 102 $aIT 105 $aa c 001yy 200 1 $aPaesaggio culturale e biodiversità$eprincipi generali, metodi, proposte operative$fa cura di Rita Colantonio Venturelli e Felix Müller 210 $aFirenze$cLeo S. Olschki$d2003 215 $aXV, 258 p.,$cill.$d24 cm 225 1 $aVilla Vigoni$iStudi italo-tedeschi$v8 225 1 $aGiardini e paesaggio$v7 610 0 $aBoschi e foreste$aTutela$aItalia 610 0 $aBoschi e foreste$aTutela$aGermania 676 $a333.750943 676 $a333.9516 676 $a712 702 1$aMuller,$bFelix 702 1$aColantonio Venturelli,$bRita 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910745096903321 952 $aART.FI B 658$b712/2023$fFARBC 959 $aFARBC 996 $aPaesaggio culturale e biodiversità$959022 997 $aUNINA LEADER 03280nam 22006855 450 001 9910483359003321 005 20250609110929.0 010 $a9783540315520 010 $a3540315527 024 7 $a10.1007/b104912 035 $a(CKB)1000000000231910 035 $a(DE-He213)978-3-540-31552-0 035 $a(SSID)ssj0000315664 035 $a(PQKBManifestationID)11211609 035 $a(PQKBTitleCode)TC0000315664 035 $a(PQKBWorkID)10264542 035 $a(PQKB)10831768 035 $a(MiAaPQ)EBC6283451 035 $a(MiAaPQ)EBC4976043 035 $a(Au-PeEL)EBL4976043 035 $a(CaONFJC)MIL140212 035 $a(OCoLC)1024261838 035 $a(PPN)123090938 035 $a(MiAaPQ)EBC5585655 035 $a(EXLCZ)991000000000231910 100 $a20100806d2005 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAbstract Harmonic Analysis of Continuous Wavelet Transforms /$fby Hartmut Führ 205 $a1st ed. 2005. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2005. 215 $a1 online resource (X, 193 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1863 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9783540242598 311 08$a3540242597 320 $aIncludes bibliographical references (pages [185]-190) and index. 327 $aIntroduction -- Wavelet Transforms and Group Representations -- The Plancherel Transform for Locally Compact Groups -- Plancherel Inversion and Wavelet Transforms -- Admissible Vectors for Group Extension -- Sampling Theorems for the Heisenberg Group -- References -- Index. 330 $aThis volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a ? reasonably self-contained ? exposition of Plancherel theory. Therefore, the book can also be read as a problem-driven introduction to the Plancherel formula. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1863 606 $aHarmonic analysis 606 $aFourier analysis 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aFourier Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12058 615 0$aHarmonic analysis. 615 0$aFourier analysis. 615 14$aAbstract Harmonic Analysis. 615 24$aFourier Analysis. 676 $a515.2433 700 $aFu?hr$b Hartmut$4aut$4http://id.loc.gov/vocabulary/relators/aut$00 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483359003321 996 $aAbstract harmonic analysis of continuous wavelet transforms$9230757 997 $aUNINA