LEADER 04441nam 22008415 450 001 9910741179303321 005 20200630180438.0 010 $a3-319-24651-8 024 7 $a10.1007/978-3-319-24651-2 035 $a(CKB)3710000000515833 035 $a(EBL)4098336 035 $a(SSID)ssj0001585554 035 $a(PQKBManifestationID)16264603 035 $a(PQKBTitleCode)TC0001585554 035 $a(PQKBWorkID)14865424 035 $a(PQKB)11667305 035 $a(DE-He213)978-3-319-24651-2 035 $a(MiAaPQ)EBC4098336 035 $a(PPN)190522747 035 $a(EXLCZ)993710000000515833 100 $a20151119d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSkyrmions in Magnetic Materials /$fby Shinichiro Seki, Masahito Mochizuki 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (73 p.) 225 1 $aSpringerBriefs in Physics,$x2191-5423 300 $aDescription based upon print version of record. 311 $a3-319-24649-6 320 $aIncludes bibliographical references at the end of each chapters. 327 $aTheoretical Model of Magnetic Skyrmions -- Observation of Skyrmions in Magnetic Materials -- Skyrmions and Electric Currents in Metallic Materials -- Skyrmions and Electric Fields in Insulating Materials -- Summary and Perspective. 330 $aThis brief reviews current research on magnetic skyrmions, with emphasis on formation mechanisms, observation techniques, and materials design strategies. The response of skyrmions, both static and dynamical, to various electromagnetic fields is also covered in detail. Recent progress in magnetic imaging techniques has enabled the observation of skyrmions in real space, as well as the analysis of their ordering manner and the details of their internal structure. In metallic systems, conduction electrons moving through the skyrmion spin texture gain a nontrivial quantum Berry phase, which provides topological force to the underlying spin texture and enables the current-induced manipulation of magnetic skyrmions. On the other hand, skyrmions in an insulator can induce electric polarization through relativistic spin-orbit interaction, paving the way for the control of skyrmions by an external electric field without loss of Joule heating. Because of its nanometric scale, particle nature, and electric controllability, skyrmions are considered as potential candidates for new information carriers in the next generation of spintronics devices. 410 0$aSpringerBriefs in Physics,$x2191-5423 606 $aQuantum computers 606 $aSpintronics 606 $aOptical materials 606 $aElectronics$xMaterials 606 $aNanochemistry 606 $aMagnetism 606 $aMagnetic materials 606 $aNuclear physics 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aNanochemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C33000 606 $aMagnetism, Magnetic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/P25129 606 $aParticle and Nuclear Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P23002 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aOptical materials. 615 0$aElectronics$xMaterials. 615 0$aNanochemistry. 615 0$aMagnetism. 615 0$aMagnetic materials. 615 0$aNuclear physics. 615 14$aQuantum Information Technology, Spintronics. 615 24$aOptical and Electronic Materials. 615 24$aNanochemistry. 615 24$aMagnetism, Magnetic Materials. 615 24$aParticle and Nuclear Physics. 676 $a530 700 $aSeki$b Shinichiro$4aut$4http://id.loc.gov/vocabulary/relators/aut$0810979 702 $aMochizuki$b Masahito$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910741179303321 996 $aSkyrmions in Magnetic Materials$93554164 997 $aUNINA