LEADER 03997nam 22006975 450 001 9910739476303321 005 20200702075614.0 010 $a3-030-16804-2 024 7 $a10.1007/978-3-030-16804-9 035 $a(CKB)4100000007992552 035 $a(MiAaPQ)EBC5759507 035 $a(DE-He213)978-3-030-16804-9 035 $a(PPN)235669393 035 $a(EXLCZ)994100000007992552 100 $a20190423d2019 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantum Brownian Motion Revisited $eExtensions and Applications /$fby Aniello Lampo, Miguel Ángel García March, Maciej Lewenstein 205 $a1st ed. 2019. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2019. 215 $a1 online resource (111 pages) 225 1 $aSpringerBriefs in Physics,$x2191-5423 311 $a3-030-16803-4 327 $aIntroduction -- Classical Brownian motion -- Quantum Brownian motion -- Non-linear quantum Brownian motion -- A Lindblad model for quantum Brownian motion -- Heisenberg equations approach -- Conclusions and perspectives -- Heisenberg principle for density operators -- Gaussian approximation -- Bibliography. 330 $aQuantum Brownian motion represents a paradigmatic model of open quantum system, namely a system inextricably coupled to the surrounding environment. Such a model is largely used in physics, for instance in quantum foundations to approach in a quantitative manner the quantum-to-classical transition, but also for more practical purposes as the estimation of decoherence in quantum optics experiments. This book presents the main techniques aimed to treat the dynamics of the quantum Brownian particle: Born-Markov master equation, Lindblad equation and Heisenberg equations formalism. Particular attention is given to the interaction between the particle and the bath depends non-linearly on the position of the former. This generalization corresponds to the case in which the bath is not homogeneous. An immediate application is the Bose polaron, specifically an impurity embedded in an ultracold gas. 410 0$aSpringerBriefs in Physics,$x2191-5423 606 $aQuantum physics 606 $aStatistical physics 606 $aLow temperature physics 606 $aLow temperatures 606 $aQuantum optics 606 $aPhase transformations (Statistical physics) 606 $aCondensed materials 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 606 $aLow Temperature Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25130 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aQuantum Gases and Condensates$3https://scigraph.springernature.com/ontologies/product-market-codes/P24033 615 0$aQuantum physics. 615 0$aStatistical physics. 615 0$aLow temperature physics. 615 0$aLow temperatures. 615 0$aQuantum optics. 615 0$aPhase transformations (Statistical physics). 615 0$aCondensed materials. 615 14$aQuantum Physics. 615 24$aStatistical Physics and Dynamical Systems. 615 24$aLow Temperature Physics. 615 24$aQuantum Optics. 615 24$aQuantum Gases and Condensates. 676 $a530.475 700 $aLampo$b Aniello$4aut$4http://id.loc.gov/vocabulary/relators/aut$01061980 702 $aGarcía March$b Miguel Ángel$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aLewenstein$b Maciej$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910739476303321 996 $aQuantum Brownian Motion Revisited$93553232 997 $aUNINA