LEADER 02659nam 22005655 450 001 9910739449003321 005 20240619152818.0 010 $a3-031-28428-3 024 7 $a10.1007/978-3-031-28428-1 035 $a(MiAaPQ)EBC30713768 035 $a(Au-PeEL)EBL30713768 035 $a(DE-He213)978-3-031-28428-1 035 $a(PPN)272271330 035 $a(CKB)28005036600041 035 $a(EXLCZ)9928005036600041 100 $a20230819d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA Guide to Penrose Tilings /$fby Francesco D'Andrea 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (203 pages) 311 08$aPrint version: D'Andrea, Francesco A Guide to Penrose Tilings Cham : Springer,c2023 9783031284274 327 $aIntroduction -- Tilings and puzzles -- Robinson triangles -- Penrose tilings -- De Bruijn?s pentagrids -- The noncommutative space of Penrose tilings.-Some useful formulas. 330 $aThis book provides an elementary introduction, complete with detailed proofs, to the celebrated tilings of the plane discovered by Sir Roger Penrose in the '70s. Quasi-periodic tilings of the plane, of which Penrose tilings are the most famous example, started as recreational mathematics and soon attracted the interest of scientists for their possible application in the description of quasi-crystals. The purpose of this survey, illustrated with more than 200 figures, is to introduce the curious reader to this beautiful topic and be a reference for some proofs that are not easy to find in the literature. The volume covers many aspects of Penrose tilings, including the study, from the point of view of Connes' Noncommutative Geometry, of the space parameterizing these tilings. 606 $aConvex geometry 606 $aDiscrete geometry 606 $aAlgebraic geometry 606 $aConvex and Discrete Geometry 606 $aAlgebraic Geometry 606 $aMosaics (Matemātica)$2thub 608 $aLlibres electrōnics$2thub 615 0$aConvex geometry. 615 0$aDiscrete geometry. 615 0$aAlgebraic geometry. 615 14$aConvex and Discrete Geometry. 615 24$aAlgebraic Geometry. 615 7$aMosaics (Matemātica) 676 $a516.132 700 $aD'Andrea$b Francesco$0545861 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910739449003321 996 $aA Guide to Penrose Tilings$93553881 997 $aUNINA