LEADER 01152nam2 2200277 i 450 001 996258649103316 005 20180615121639.0 010 $a978-88-14-22629-8 100 $a20180329d2018----||||0itac50 ba 101 $aita 102 $aIT 200 1 $aForma informativa nei contratti asimmetrici$econtributo allo studio della forma funzionale nei contratti asimmetrici, bancari e di investimento$fEmilio Tosi 210 $aMilano$cGiuffrè$d2018 215 $aXII, 272 p.$d24 cm 225 $aStudi di diritto privato dell'economia 410 0$1001996258649303316$aStudi di diritto privato dell'economia$fUniversità degli studi di Milano-Bicocca, Dipartimento scienze economico-aziendale e diritto per l'economia$v19$aUniversità degli studi di Milano-Bicocca 606 0 $aContratti del consumatore [e] Contratti commerciali$yItalia$2BNCF 676 $a343.45071 700 1$aTOSI,$bEmilio$0437929 801 0$aIT$bsalbc$gISBD 912 $a996258649103316 951 $aXXX.B. Coll. 151/ 13$b87670 G.$cXXX.B. Coll.$d414032 959 $aBK 969 $aGIU 996 $aForma informativa nei contratti asimmetrici$91508267 997 $aUNISA LEADER 03957nam 2200577Ia 450 001 9910739443103321 005 20200520144314.0 010 $a3-319-00128-0 024 7 $a10.1007/978-3-319-00128-9 035 $a(CKB)2670000000371274 035 $a(EBL)1317088 035 $a(SSID)ssj0000904256 035 $a(PQKBManifestationID)11474233 035 $a(PQKBTitleCode)TC0000904256 035 $a(PQKBWorkID)10920116 035 $a(PQKB)10914553 035 $a(DE-He213)978-3-319-00128-9 035 $a(MiAaPQ)EBC1317088 035 $a(PPN)170489388 035 $a(EXLCZ)992670000000371274 100 $a20111102d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHypoelliptic Laplacian and Bott-Chern cohomology $ea theorem of Riemann-Roch-Grothendieck in complex geometry /$fJean-Michel Bismut 205 $a1st ed. 2013. 210 $aBasel $cSpringer$d2013 215 $a1 online resource (210 p.) 225 0 $aProgress in mathematics ;$v305 300 $aDescription based upon print version of record. 311 $a3-319-03389-1 311 $a3-319-00127-2 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- 1 The Riemannian adiabatic limit -- 2 The holomorphic adiabatic limit -- 3 The elliptic superconnections -- 4 The elliptic superconnection forms -- 5 The elliptic superconnections forms -- 6 The hypoelliptic superconnections -- 7 The hypoelliptic superconnection forms -- 8 The hypoelliptic superconnection forms of vector bundles -- 9 The hypoelliptic superconnection forms -- 10 The exotic superconnection forms of a vector bundle -- 11 Exotic superconnections and Riemann?Roch?Grothendieck -- Bibliography -- Subject Index -- Index of Notation.  . 330 $aThe book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann?Roch?Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott?Chern cohomology, which is a refinement for complex manifolds of de Rham cohomology. When the manifolds are Kähler, our main result is known. A proof can be given using the elliptic Hodge theory of the fibres, its deformation via Quillen's superconnections, and a version in families of the 'fantastic cancellations' of McKean?Singer in local index theory. In the general case, this approach breaks down because the cancellations do not occur any more. One tool used in the book is a deformation of the Hodge theory of the fibres to a hypoelliptic Hodge theory, in such a way that the relevant cohomological information is preserved, and 'fantastic cancellations' do occur for the deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative  tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, the harmonic oscillator has to be replaced by a quartic oscillator. Another idea developed in the book is that while classical elliptic Hodge theory is based on the Hermitian product on forms, the hypoelliptic theory involves a Hermitian pairing which is a mild modification of intersection pairing. Probabilistic considerations play an important role, either as a motivation of some constructions, or in the proofs themselves. 410 0$aProgress in Mathematics,$x0743-1643 ;$v305 606 $aCohomology operations 606 $aGeometry, Algebraic 615 0$aCohomology operations. 615 0$aGeometry, Algebraic. 676 $a514.23 700 $aBismut$b Jean-Michel$044924 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910739443103321 996 $aHypoelliptic Laplacian and Bott-Chern cohomology$9836725 997 $aUNINA