LEADER 01193nam0-22003371i-450 001 990004786590403321 005 20210906125807.0 035 $a000478659 100 $a19990604g19719999km-y0itay50------ba 101 0 $afre 105 $ay-------001yy 200 1 $aRepertoire international des mèdièvistes$fpar Edmond-René Labande et Bernadette Leplant 210 $aPoitiers$cCentre d'Études Supèrieures de Civilisation MTdiévale$d1971 215 $a2 v.$d26 cm 225 1 $aPublications du C.É.S.C.M.$v5 300 $aSpplement aux Cahiers de Civilisation Médiévale 676 $a016.90907 702 1$aLabande,$bEdmond-René$f<1908-1992> 702 1$aLeplant,$bBernadette 712 02$aUNIVERSITE', Poitiers 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004786590403321 952 $a016.909 RIM 1 (1)$bFil. Mod. 18986$fFLFBC 952 $a016.909 RIM 1 (2)$bFil. Mod. 18986$fFLFBC 952 $aST.MED.MOD. 3119 (1)$bST.MED.MOD. 8292$fFLFBC 952 $aST.MED.MOD. 3119 (2)$bST.MED.MOD. 8292$fFLFBC 952 $aFCL 853 (1)$b3109$fFLFBC 959 $aFLFBC 996 $aRépertoire international des médiévistes$9230345 997 $aUNINA LEADER 05080nam 22007215 450 001 9910736978703321 005 20200704165915.0 010 $a94-024-0959-9 024 7 $a10.1007/978-94-024-0959-8 035 $a(CKB)3710000001124896 035 $a(DE-He213)978-94-024-0959-8 035 $a(MiAaPQ)EBC4828429 035 $a(PPN)199764573 035 $a(EXLCZ)993710000001124896 100 $a20170322d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDifferential Geometry and Mathematical Physics $ePart II. Fibre Bundles, Topology and Gauge Fields /$fby Gerd Rudolph, Matthias Schmidt 205 $a1st ed. 2017. 210 1$aDordrecht :$cSpringer Netherlands :$cImprint: Springer,$d2017. 215 $a1 online resource (XVI, 830 p. 15 illus., 2 illus. in color.) 225 1 $aTheoretical and Mathematical Physics,$x1864-5879 311 $a94-024-0958-0 320 $aIncludes bibliographical references and index. 327 $aFibre bundles and connections -- Linear connections and Riemannian geometry -- Homotopy theory of principal fibre bundles. Classification -- Cohomology theory of fibre bundles. Characteristic classes -- Clifford algebras, spin structures and Dirac operators -- The Yang-Mills equation -- Matter fields and model building -- The gauge orbit space -- Elements of quantum gauge theory -- A Field restriction and field extension -- B The Conformal Group of the 4-sphere -- C Simple Lie algebras. Root diagrams -- D z -function regularization -- E K-theory and index bundles -- F Determinant line bundles -- G Eilenberg-MacLane spaces -- References. Index. 330 $aThe book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks: - Geometry and topology of fibre bundles, - Clifford algebras, spin structures and Dirac operators, - Gauge theory. Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory. The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces. Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory. The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level. 410 0$aTheoretical and Mathematical Physics,$x1864-5879 606 $aPhysics 606 $aGeometry, Differential 606 $aMathematical physics 606 $aGeometry, Algebraic 606 $aAlgebraic topology 606 $aParticles (Nuclear physics) 606 $aQuantum field theory 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 606 $aElementary Particles, Quantum Field Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P23029 615 0$aPhysics. 615 0$aGeometry, Differential. 615 0$aMathematical physics. 615 0$aGeometry, Algebraic. 615 0$aAlgebraic topology. 615 0$aParticles (Nuclear physics) 615 0$aQuantum field theory. 615 14$aMathematical Methods in Physics. 615 24$aDifferential Geometry. 615 24$aMathematical Physics. 615 24$aAlgebraic Geometry. 615 24$aAlgebraic Topology. 615 24$aElementary Particles, Quantum Field Theory. 676 $a530.15 700 $aRudolph$b Gerd$4aut$4http://id.loc.gov/vocabulary/relators/aut$0764074 702 $aSchmidt$b Matthias$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910736978703321 996 $aDifferential geometry and mathematical physics$91550986 997 $aUNINA