LEADER 06256nam 22008295 450 001 9910736024603321 005 20251113202021.0 010 $a9783031327070 010 $a3031327071 024 7 $a10.1007/978-3-031-32707-0 035 $a(MiAaPQ)EBC30668868 035 $a(Au-PeEL)EBL30668868 035 $a(DE-He213)978-3-031-32707-0 035 $a(PPN)272252417 035 $a(CKB)27878831700041 035 $a(OCoLC)1393305319 035 $a(EXLCZ)9927878831700041 100 $a20230728d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aNon-Associative Algebras and Related Topics $eNAART II, Coimbra, Portugal, July 18?22, 2022 /$fedited by Helena Albuquerque, Jose Brox, Consuelo Martínez, Paulo Saraiva 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (305 pages) 225 1 $aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v427 311 08$aPrint version: Albuquerque, Helena Non-Associative Algebras and Related Topics Cham : Springer International Publishing AG,c2023 9783031327063 327 $aPart 1: Lie Algebras, Superalgebras and Groups -- 1.Local derivations of classical simple Lie algebras (S. Ayupov, K. Kudaybergenov) -- 2. Examples and patterns on quadratic Lie algebras (P. Benito and J. Roldán-López) -- 3. Reductive homogeneous spaces of the compact Lie group G2 (C. Draper and F. J. Palomo) -- 4. On certain algebraic structures associated with Lie (super)algebras(N. Kamiya) -- 5. Schreier?s type formulae and two scales for growth of Lie algebras and groups (V. Petrogradsky) -- Part 2: Leibniz Algebras -- 6. Universal central extensions of compatible Leibniz algebras (J.M.C Mirás, M. Ladra) -- 7. On some properties of generalized Lie-derivations of Leibniz algebras (J.M.C Mirás, N.P. Rego) -- 8. Biderivations of low-dimensional Leibniz algebras (M. Mancini) -- 9. Poisson structure on the invariants of pairs of matrices (R. Turdibaev) -- Part 3. Associative and Jordan Algebras and Related Structures -- 10. Automorphisms, derivations and gradings of the split quartic Cayley algebra (V. Blasco and A. Daza-García) -- 11. On a Theorem of Brauer-Cartan-Hua type in superalgebras (J. Laliena) -- 12. Growth functions of Jordan algebras (C. Martínez and E. Zelmanov) -- 13. The image of polynomials in one variable on the algebra of 3 × 3 upper triangular matrices (T.C. de Mello and D.Rodrigues) -- Part 4: Other Nonassociative Structures -- 14. Simultaneous orthogonalization of inner products over arbitrary ?elds (Y. Cabrera, C. Gil, D. Martín and C. Martín) -- 15. Invariant theory of free bicommutative algebras (V. Drensky) -- 16. An approach to the classi?cation of ?nite semi?elds by quantum computing (J.M.H. Cáceres, I.F. Rúa) -- 17.On ideals and derived and central descending series of n-ary Hom-algebras (A. Kitouni, S. Mboya, E. Ongong?a, S. Silvestrov) -- 18. Okubo algebras with isotropic norm (A. Elduque). 330 $aThis proceedings volume presents a selection of peer-reviewed contributions from the Second Non-Associative Algebras and Related Topics (NAART II) conference, which was held at the University of Coimbra, Portugal, from July 18?22, 2022. The conference was held in honor of mathematician Alberto Elduque, who has made significant contributions to the study of non-associative structures such as Lie, Jordan, and Leibniz algebras. The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory. One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists. Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures. 410 0$aSpringer Proceedings in Mathematics & Statistics,$x2194-1017 ;$v427 606 $aNonassociative rings 606 $aFunctional analysis 606 $aComputer science$xMathematics 606 $aCoding theory 606 $aInformation theory 606 $aCryptography 606 $aData encryption (Computer science) 606 $aData structures (Computer science) 606 $aNon-associative Rings and Algebras 606 $aFunctional Analysis 606 $aMathematical Applications in Computer Science 606 $aCoding and Information Theory 606 $aCryptology 606 $aData Structures and Information Theory 615 0$aNonassociative rings. 615 0$aFunctional analysis. 615 0$aComputer science$xMathematics. 615 0$aCoding theory. 615 0$aInformation theory. 615 0$aCryptography. 615 0$aData encryption (Computer science) 615 0$aData structures (Computer science) 615 14$aNon-associative Rings and Algebras. 615 24$aFunctional Analysis. 615 24$aMathematical Applications in Computer Science. 615 24$aCoding and Information Theory. 615 24$aCryptology. 615 24$aData Structures and Information Theory. 676 $a512.48 700 $aAlbuquerque$b Helena$01380299 701 $aBrox$b Jose$01380300 701 $aMartínez$b Consuelo$01380301 701 $aSaraiva$b Paulo$01380302 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910736024603321 996 $aNon-Associative Algebras and Related Topics$93421575 997 $aUNINA