LEADER 12231nam 22006615 450 001 9910736015703321 005 20230729122755.0 010 $a9789819938704 010 $a9819938708 024 7 $a10.1007/978-981-99-3870-4 035 $a(MiAaPQ)EBC30669117 035 $a(Au-PeEL)EBL30669117 035 $a(DE-He213)978-981-99-3870-4 035 $a(PPN)27225438X 035 $a(CKB)27878831800041 035 $a(EXLCZ)9927878831800041 100 $a20230729d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdvancement in Power Transformer Infrastructure and Digital Protection /$fby Nilesh Chothani, Maulik Raichura, Dharmesh Patel 205 $a1st ed. 2023. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2023. 215 $a1 online resource (331 pages) 225 1 $aStudies in Infrastructure and Control,$x2730-6461 311 08$a9789819938698 311 08$a9819938694 327 $aIntro -- Preface -- Acknowledgments -- Key Features of the Book -- Contents -- About the Authors -- Abbreviations -- List of Figures -- List of Tables -- 1 Transformer Infrastructure for Power Grid -- 1.1 Introduction -- 1.2 Role of Large Power Transformers in the Electric Grid -- 1.3 Power System Infrastructure -- 1.4 Three-Phase Transformer Interconnections -- 1.5 Transformer Technology Development -- 1.5.1 Design Technology -- 1.5.2 Testing of Transformer -- 1.6 On-Load Tap Changer (OLTC) of Transformer -- 1.6.1 Where to Employ the OLTC on Transformer -- 1.6.2 Classification of OLTC Based on Its Construction -- 1.6.3 Advantages of OLTCs -- 1.6.4 Disadvantages of OLTCs -- 1.7 Dissolved Gas Analysis for Transformer Monitoring and Protection -- 1.7.1 How Gases Generated in Transformer -- 1.7.2 Identification of Faults by Gas Analysis -- 1.7.3 Methods for DGA -- 1.7.4 Advantages of Performing DGA -- 1.8 Condition Monitoring of the Transformer -- 1.8.1 Working Condition Monitoring -- 1.8.2 Emergency Condition Monitoring -- 1.9 Real-Time Operation and Protection of Power Transformer -- 1.10 Smart Transformer for Smart Grid Operation -- 1.11 Advanced Transformer Infrastructure (ATI)-Various Benefits -- 1.12 Conclusion -- References -- 2 An Overview of the Protection of Power Transformers -- 2.1 Protection Basics -- 2.1.1 Unit and Non-unit Protection -- 2.1.2 Primary and Backup Protection -- 2.2 Problem Statements and Basics -- 2.3 Investigation Targets -- 2.4 Introduction -- 2.5 Different Faults/Abnormalities Observed in Transformer -- 2.5.1 Internal Fault -- 2.5.2 Sources of Internal Fault in Transformer -- 2.6 External Fault for the Transformer -- 2.7 Abnormalities in the Transformer -- 2.8 Different Transformer Protective Schemes Used in Field -- 2.8.1 Overcurrent (OC) Protection. 327 $a2.8.2 OC (Overcurrent) Protection with Harmonic Restrain Unit (HRU) -- 2.8.3 REF (Restricted Earth Fault) Protective Scheme -- 2.8.4 Unit-Type Protection of Transformer (Differential Protection) -- 2.9 General Magnetizing Inrush Phenomenon -- 2.10 Over-Fluxing Condition -- 2.11 Inter-Turn Fault Protection -- 2.12 Non-electrical Protection -- 2.12.1 Thermal Relay -- 2.12.2 Temperature-Based OTI and WTI Relays -- 2.12.3 Buchholz Relay -- 2.12.4 Pressure Relays (PRs) -- 2.13 Generalized Protections Applied to Transformer -- 2.14 Adverse Effect of Single Phasing on Three-Phase Transformer -- 2.14.1 Basic Magnetic Circuit -- 2.14.2 Observation and Confirmation of the Theoretical Approach -- 2.14.3 Remarks of Single Phasing Supply to Three-Phase Transformer -- 2.15 Different Research Techniques Used in Transformer Protection -- 2.16 Examples -- 2.17 Conclusion -- References -- 3 Introduction to Magnetic Inrush of Power Transformer -- 3.1 Basic of Magnetic Inrush -- 3.2 Various Classifier Techniques to Identify Inrush States -- 3.2.1 Discriminative Technique Depending on Harmonics Content (Which Contains DC Offset) -- 3.2.2 Electrical Quantity's Wave Pattern-Based Techniques -- 3.2.3 Discriminative and Decomposing Schemes -- 3.2.4 Morphological-Based Analysis -- 3.2.5 Power Utilization-Dependent Techniques -- 3.2.6 Flux-Based Methodologies -- 3.2.7 Methodology for Mitigation of Level of Inrush Current -- 3.3 The Proposed Technique for Inrush Stimuli Discrimination -- 3.4 System Modeling -- 3.5 Anticipated Algorithm -- 3.6 Obtained Results Discussion -- 3.7 Magnetic Inrush Case -- 3.8 Interior Type of Fault Case -- 3.9 Interior Type of Fault Followed by Inrush Case -- 3.10 Conclusion -- 3.11 Question and Answer -- Appendices -- Appendix 1 -- Appendix 2 -- References -- 4 Current Transformer Infrastructure and Its Application to Power System Protection. 327 $a4.1 Basic of Current Transformer (CT) -- 4.2 Design Consideration of Current Transformer -- 4.2.1 Over-Sizing Factors of CT -- 4.3 Diminishing the Effects of CT Saturation -- 4.3.1 Time-to-Saturation -- 4.3.2 Required Caution in CT Optimal Choice -- 4.4 Consequences of CT Saturation on Protective Relays -- 4.4.1 Impact of CT Saturation on Electromechanical Relays -- 4.4.2 Impact of CT Saturation on Static/Digital Relays -- 4.4.3 Influence of CT Saturation on Differential Relays -- 4.5 Important Points to Select CTs for Protective Schemes -- 4.6 System Diagram and Parameters -- 4.7 Effect of Parameter Variations on CT Performance -- 4.7.1 Consideration of Core Over-Sizing Factors at FIA = 0.515 -- 4.7.2 Effect of DC Component -- 4.7.3 CT Secondary Burden Effect on Saturation -- 4.7.4 CT Saturation Effect Under the Influence of the Remnant Flux Density -- 4.7.5 Effect of FIA Variation on CT -- 4.8 CT Saturation Analysis in Laboratory Prototype -- 4.9 Detection of Saturation of CT in Unit-Type Protection of Power Transformer -- 4.9.1 Simulation Modeling of Power System -- 4.9.2 Projected Approach -- 4.10 Result Analysis -- 4.10.1 Internal Fault -- 4.10.2 External Fault Without CT Saturation -- 4.10.3 External Fault with CT Saturation -- 4.11 Conclusion -- Appendices -- Appendix 1 -- Appendix 2 -- References -- 5 Impact of Transitory Excessive Fluxing Condition on Power Transformer Protection -- 5.1 Introduction -- 5.2 Modeling of System Diagram -- 5.3 Problem Declaration and Algorithm Suggestion -- 5.4 Investigation of the Obtained Results -- 5.4.1 Performance Evaluation of the Projected Scheme for the Period of Normal State/Exterior Fault State of the Transformer -- 5.4.2 Performance Evaluation of the Projected Scheme While Insider Fault State of the Transformer. 327 $a5.4.3 Performance Evaluation of the Projected Scheme for Excessive Fluxing State of the Considered Transformer -- 5.5 Elaboration of Hardware Arrangement and Result Conversation -- 5.5.1 Current Wave Pattern While Interior Fault Case of Transformer -- 5.5.2 Current Wave Pattern While Exterior Fault Case of the Transformer -- 5.5.3 Current Wave Pattern While Continuous and Temporary Excessive Fluxing State of the Considered Transformer -- 5.6 Advantages of the Presented Scheme Over the Conventional Scheme -- 5.7 Conclusion -- 5.8 Question and Answer -- References -- 6 Total Harmonic Distortion-Based Improved Transformer Protective Scheme -- 6.1 Introduction -- 6.2 Modeling of Power Structure -- 6.3 Presented Technique for Inrush and Fault Discrimination -- 6.4 The Outcome of the Proposed Technique -- 6.4.1 Initial Inrush -- 6.4.2 Internal Fault Condition -- 6.4.3 Energization of Transformer in Existence of Faulty Condition -- 6.4.4 Fault Case While CT Saturates -- 6.5 Hardware Test Arrangement for Different Result Investigation -- 6.5.1 Preliminary Inrush Situation -- 6.5.2 Sympathetic Type of Inrush Condition -- 6.5.3 Recovery Type of Inrush Condition -- 6.5.4 Exterior Fault Cases -- 6.5.5 Exterior Fault with CT Saturation Cases -- 6.5.6 Interior Fault Case -- 6.5.7 Interior Fault While CTs Saturates -- 6.5.8 No-load Current with Its Harmonics -- 6.6 Conclusion -- 6.7 Question and Answer -- References -- 7 Adaptive Biased Differential Protection Considering Over-Fluxing and CT Saturation Conditions -- 7.1 The Preamble of Idea Generation -- 7.2 Problem Declaration and System Diagram Descriptions -- 7.3 Projected Algorithm for Adaptive Transformer Differential Protection -- 7.3.1 Modified Full Cycle DFT (MFCDFT) Algorithm for Phasor Estimation -- 7.3.2 Setting of Biased Percentage Differential Relaying Scheme. 327 $a7.3.3 Detection of Magnetizing Inrush in Transformer -- 7.3.4 Adaptation in Basic Pickup Setting -- 7.3.5 Vavg/f Transformer Protection or Transformer Over-Fluxing Protection -- 7.3.6 Current Transformer Saturation Detection -- 7.4 Various Result Exploration with Argument -- 7.4.1 Normal Load, Overloading, and External Fault State -- 7.4.2 Transformer Inrush Detection -- 7.4.3 A Fault Within the Internal Premises of the Transformer -- 7.4.4 External Fault with CT Saturation Condition -- 7.4.5 Discrimination of Over-Fluxing in Transformer Protection -- 7.4.6 Inception of Internal Fault in the Existence of Over-Fluxing Situation -- 7.5 Laboratory Setup for Hardware Test Results -- 7.5.1 The Inrush of Transformer on Hardware -- 7.5.2 Normal Load, Overloading, and External Fault Situation -- 7.5.3 Internal Fault Situation -- 7.5.4 Over-Fluxing Situation -- 7.5.5 Saturation of CT During External Fault -- 7.5.6 Very Severe External Fault in the Existence of Over-Fluxing Condition -- 7.6 Conclusion -- 7.7 Question and Answer -- Appendix -- References -- 8 Convolution Neural Network and XGBoost-Based Fault Identification in Power Transformer -- 8.1 Brief Introduction About the Work -- 8.2 Combined CNN-XGBoost Technique -- 8.2.1 Convolutional Neural Network (CNN) -- 8.2.2 Extreme Gradient Boosting (XGBoost) -- 8.3 Power System Network -- 8.3.1 Training and Testing Data Generation -- 8.4 Algorithm of the Proposed XGBoost Scheme -- 8.4.1 Parameter Setting in Algorithm -- 8.5 Result in Discussion on Fault Classification -- 8.6 Hardware Setup for Various Result Analyses -- 8.7 Conclusion -- 8.8 Questions and Answers -- Appendices -- Appendix 1 -- Appendix 2 -- References -- 9 Sequential Component-Based Improvement in Percentage Biased Differential Protection of a Power Transformer -- 9.1 Introduction. 327 $a9.2 Projected Transformer Differential Protection Performance. 330 $aThis book provides an overview of a power transformer infrastructure and comprehensive digital protection of it. It presents various protective methodologies available to protect the transformer from disturbances by taking care of mal-operation due to external disturbances and providing fine protection to the transformer. Though there are many protection methodologies available in the practice. However, these existing methodologies may mal-operate during external disturbances such as inrush, over-fluxing and short circuits. Hence, further research is needed in addition to the existing methods of protection in terms of more fault prediction accuracy, speedy operation, and lower protection cost with zero error in the detection of faults. The book will be useful reference for practitioners from academia and industrial applications. . 410 0$aStudies in Infrastructure and Control,$x2730-6461 606 $aPower electronics 606 $aArtificial intelligence 606 $aPower Electronics 606 $aArtificial Intelligence 606 $aIntelligence Infrastructure 615 0$aPower electronics. 615 0$aArtificial intelligence. 615 14$aPower Electronics. 615 24$aArtificial Intelligence. 615 24$aIntelligence Infrastructure. 676 $a621.381044 700 $aChothani$b Nilesh$01250615 701 $aRaichura$b Maulik$01380201 701 $aPatel$b Dharmesh$0892266 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910736015703321 996 $aAdvancement in Power Transformer Infrastructure and Digital Protection$93421477 997 $aUNINA