LEADER 02756nam 2200649Ia 450 001 9910461272803321 005 20210928145401.0 010 $a1-283-73510-5 010 $a0-12-381465-0 035 $a(CKB)2670000000172226 035 $a(EBL)892223 035 $a(OCoLC)784147337 035 $a(SSID)ssj0000662865 035 $a(PQKBManifestationID)11955799 035 $a(PQKBTitleCode)TC0000662865 035 $a(PQKBWorkID)10722615 035 $a(PQKB)10056514 035 $a(MiAaPQ)EBC892223 035 $a(CaSebORM)9780123814647 035 $a(Au-PeEL)EBL892223 035 $a(CaPaEBR)ebr10547255 035 $a(CaONFJC)MIL404760 035 $a(EXLCZ)992670000000172226 100 $a20120305d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInformation visualization$b[electronic resource] $eperception for design /$fColin Ware 205 $a3rd ed. 210 $aAmsterdam ;$aBoston $cElsevier/MK$dc2013 215 $a1 online resource (537 p.) 225 1 $aInteractive Technologies 300 $aDescription based upon print version of record. 311 $a0-12-812876-3 311 $a0-12-381464-2 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Preface; About the Author; Appendix A: Changing Primaries; Appendix B: CIE Color Measurement System; Appendix C: The Perceptual Evaluation of Visualization Techniques and Systems; Appendix D: Guidelines; Bibliography; Index; A; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W; Y; Z 330 $aMost designers know that yellow text presented against a blue background reads clearly and easily, but how many can explain why, and what really are the best ways to help others and ourselves clearly see key patterns in a bunch of data? When we use software, access a website, or view business or scientific graphics, our understanding is greatly enhanced or impeded by the way the information is presented. This book explores the art and science of why we see objects the way we do. Based on the science of perception and vision, the author presents the key principles at work for a wide r 410 0$aInteractive Technologies 606 $aInformation visualization 606 $aVisual perception 606 $aVisualization 608 $aElectronic books. 615 0$aInformation visualization. 615 0$aVisual perception. 615 0$aVisualization. 676 $a152.14 700 $aWare$b Colin$0792435 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910461272803321 996 $aInformation visualization$92450454 997 $aUNINA LEADER 06600nam 2200529 450 001 9910734886203321 005 20230717142412.0 010 $a9783031072468$b(electronic bk.) 010 $z9783031072451 035 $a(MiAaPQ)EBC7052705 035 $a(Au-PeEL)EBL7052705 035 $a(CKB)24285899400041 035 $a(OCoLC)1337946447 035 $a(PPN)263902897 035 $a(EXLCZ)9924285899400041 100 $a20230107d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnalysis and quantum groups /$fLars Tuset 210 1$aCham, Switzerland :$cSpringer Nature Switzerland AG,$d[2022] 210 4$d©2022 215 $a1 online resource (632 pages) 311 08$aPrint version: Tuset, Lars Analysis and Quantum Groups Cham : Springer International Publishing AG,c2022 9783031072451 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Contents -- 1 Introduction -- 2 Banach Spaces -- 2.1 Normed Spaces -- 2.2 Operators on Banach Spaces -- 2.3 Linear Functionals -- 2.4 Weak Topologies -- 2.5 Extreme Points -- 2.6 Fixed Point Theorems -- 2.7 The Eberlein-Krein-Smulian Theorems -- 2.8 Reflexivity and Functionals Attaining Extreme Values -- 2.9 Compact Operators on Banach Spaces -- 2.10 Complemented and Invariant Subspaces -- 2.11 An Approximation Property -- 2.12 Weakly Compact Operators -- Exercises -- 3 Bases in Banach Spaces -- 3.1 Schauder Bases -- 3.2 Unconditional Convergence -- 3.3 Equivalent Bases -- 3.4 Dual Bases -- 3.5 The James Space J -- Exercises -- 4 Operators on Hilbert Spaces -- 4.1 Hilbert Spaces -- 4.2 Fourier Transform Over the Reals -- 4.3 Fourier Series -- 4.4 Polar Decomposition of Operators on Hilbert Spaces -- 4.5 Compact Normal Operators -- 4.6 Fredholm Operators -- 4.7 Traceclass and Hilbert-Schmidt Operators -- Exercises -- 5 Spectral Theory -- 5.1 Spectral Theory for Banach Algebras -- 5.2 Spectral Theory for C*-Algebras -- 5.3 Ideals and Hereditary Subalgebras -- 5.4 The Borel Spectral Theorem -- 5.5 Von Neumann Algebras -- 5.6 The ?-Weak Topology -- 5.7 The Kaplansky Density Theorem -- 5.8 Maximal Commutative Subalgebras -- 5.9 Unit Balls and Extremal Points in C*-Algebras -- Exercises -- 6 States and Representations -- 6.1 States -- 6.2 The GNS-Representation -- 6.3 Pure States -- 6.4 Primitive Ideals and Prime Ideals -- 6.5 Postliminal C*-Algebras -- 6.6 Direct Limits -- Exercises -- 7 Types of von Neumann Algebras -- 7.1 The Lattice of Projections -- 7.2 Normalcy -- 7.3 Center Valued Traces -- 7.4 Semifinite von Neumann Algebras -- 7.5 Classification of Factors -- Exercises -- 8 Tensor Products -- 8.1 Tensor Products of C*-Algebras -- 8.2 Von Neumann Tensor Products -- 8.3 Completely Positive Maps -- 8.4 Hilbert Modules. 327 $aExercises -- 9 Unbounded Operators -- 9.1 Definitions and Basic Properties -- 9.2 The Cayley Transform -- 9.3 Sprectral Theory for Unbounded Operators -- 9.4 Generalized Convergence of Unbounded Operators -- Exercises -- 10 Tomita-Takesaki Theory -- 10.1 Left and Right Hilbert Algebras -- 10.2 Weight Theory -- 10.3 Weights and Left Hilbert Algebras -- 10.4 Weights on C*-Algebras -- 10.5 The Modular Automorphism -- 10.6 Centralizers of Weights -- 10.7 Cocycle Derivatives -- 10.8 A Generalized Radon-Nikodym Theorem -- 10.9 Standard Form -- 10.10 Spatial Derivative -- 10.11 Weights and Conditional Expectations -- 10.12 The Extended Positive Part of a von Neumann Algebra -- 10.13 Operator Valued Weights -- Exercises -- 11 Spectra and Type III Factors -- 11.1 The Arveson Spectrum -- 11.2 The Connes Spectrum -- 11.3 Classification of Type III Factors -- Exercises -- 12 Quantum Groups and Duality -- 12.1 Hopf Algebras -- 12.2 Compact Quantum Groups -- 12.3 Locally Compact Quantum Groups -- 12.4 A Fundamental Involution -- 12.5 Density Conditions -- 12.6 The Coinverse -- 12.7 Relative Invariance -- 12.8 Invariance and the Modular Element -- 12.9 Modularity and Manageability -- 12.10 The Dual Quantum Group -- Exercises -- 13 Special Cases -- 13.1 The Universal Quantum Group -- 13.2 Commutative and Cocommutative Quantum Groups -- 13.3 Amenability -- Exercises -- 14 Classical Crossed Products -- 14.1 Crossed Products of Actions -- 14.2 Takesaki-Takai Duality -- 14.3 Landstad Theory -- 14.4 Examples of Crossed Products -- Exercises -- 15 Crossed Products for Quantum Groups -- 15.1 Complete Left Invariance for Locally Compact Quantum Groups -- 15.2 Coactions and Integrability -- 15.3 Crossed Products of Coactions -- 15.4 Corepresentation Implementation of Coactions -- Exercises -- 16 Generalized and Continuous Crossed Products -- 16.1 Cocycle Crossed Products. 327 $a16.2 Cocycle Bicrossed Products -- 16.3 Continuous Coactions and Regularity -- Exercises -- 17 Basic Construction and Quantum Groups -- 17.1 Basic Construction for Crossed Products of Quantum Groups -- 17.2 From the Basic Construction to Quantum Groups -- Exercises -- 18 Galois Objects and Cocycle Deformations -- 18.1 Galois Objects -- 18.2 Deformation of C*-Algebras by Continuous Unitary 2-Cocycles -- Exercises -- 19 Doublecrossed Products of Quantum Groups -- 19.1 Radon-Nikodym Derivatives of Weights Under Coactions -- 19.2 Doublecrossed Products -- 19.3 Morphisms of Quantum Groups and Associated Right Coactions -- 19.4 More on Doublecrossed Products -- Exercises -- 20 Induction -- 20.1 Inducing Corepresentations Using Modular Theory -- Exercises -- Appendix -- A.1 Set Theoretic Preliminaries -- A.2 Cardinality and Bases of Vector Spaces -- A.3 Topology -- A.4 Nets and Induced Topologies -- A.5 The Stone-Weierstrass Theorem -- A.6 Measurability and Lp-Spaces -- A.7 Radon Measures -- A.8 Complex Measures -- A.9 Product Integrals -- A.10 The Haar-Measure -- A.11 Holomorphic Functional Calculus -- A.12 Applications to Linear Algebra and Differential Equations -- A.13 The Theorems of Carleson, Runge and Phragmen-Lindelöf -- Exercises -- Bibliography -- Index. 606 $aFunctional analysis 606 $aGroup theory 606 $aHarmonic analysis 606 $aGrups quàntics$2thub 608 $aLlibres electrònics$2thub 615 0$aFunctional analysis. 615 0$aGroup theory. 615 0$aHarmonic analysis. 615 7$aGrups quàntics 676 $a515.7 700 $aTuset$b Lars$01252224 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910734886203321 996 $aAnalysis and Quantum Groups$92902902 997 $aUNINA