LEADER 00837nam0-22003011i-450- 001 990000070800403321 035 $a000007080 035 $aFED01000007080 035 $a(Aleph)000007080FED01 035 $a000007080 100 $a20011111d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $aVerbrennungs-Motor-Lokomotiven und Triebwagen$fvon I. Franco , P. Labrijn. 210 $aHaag$cM. Nijhoff$d1932 215 $a269 p.$cill.$d25 cm 610 0 $aLocomotive 676 $a625.26 700 1$aFranco,$bI.$0332346 702 1$aLabrijn,$bPieter 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000070800403321 952 $a13 L 32 29$b9381$fFINBC 959 $aFINBC 996 $aVerbrennungs-Motor-Lokomotiven und Triebwagen$9110937 997 $aUNINA DB $aING01 LEADER 06060nam 2201573z- 450 001 9910557664703321 005 20210501 035 $a(CKB)5400000000044859 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68446 035 $a(oapen)doab68446 035 $a(EXLCZ)995400000000044859 100 $a20202105d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aStability Problems for Stochastic Models: Theory and Applications 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (370 p.) 311 08$a3-0365-0452-4 311 08$a3-0365-0453-2 330 $aThe aim of this Special Issue of Mathematics is to commemorate the outstanding Russian mathematician Vladimir Zolotarev, whose 90th birthday will be celebrated on February 27th, 2021. The present Special Issue contains a collection of new papers by participants in sessions of the International Seminar on Stability Problems for Stochastic Models founded by Zolotarev. Along with research in probability distributions theory, limit theorems of probability theory, stochastic processes, mathematical statistics, and queuing theory, this collection contains papers dealing with applications of stochastic models in modeling of pension schemes, modeling of extreme precipitation, construction of statistical indicators of scientific publication importance, and other fields. 517 $aStability Problems for Stochastic Models 606 $aMathematics & science$2bicssc 606 $aResearch & information: general$2bicssc 610 $aapproximation accuracy 610 $aasymptotic approximations 610 $abalance equation 610 $achange of the priority 610 $acharacteristic function 610 $acitation distribution 610 $aclass ?a(g) 610 $aconditional central limit theorem 610 $aconditional law of large numbers 610 $acontinuous-time Markov chains 610 $acontour integrals 610 $aconvergence rates 610 $adecomposable semi-regenerative process 610 $adecrement tables 610 $adefined contribution pension schemes 610 $adispatching 610 $adistribution function 610 $aequilibrium transform 610 $aextreme order statistics 610 $afiltering given time-discretized observations 610 $aforward Kolmogorov system 610 $afractional laplacian 610 $ageneralized gamma distribution 610 $ageneralized Linnik distribution 610 $ageneralized Mittag-Leffler distribution 610 $ageneralized negative binomial distribution 610 $ageometric distribution 610 $ageometric random sum 610 $ageometrically stable distribution 610 $agross premium 610 $aHankel contours 610 $aheavy-tailed distributions 610 $aheterogeneous servers 610 $ahigh-dimensional 610 $aHirsch index 610 $aintegral limit theorem 610 $aintegrals and sums 610 $aKantorovich distance 610 $aLaplace distribution 610 $alimit theorems 610 $alocal limit theorem 610 $along-term dependence 610 $alow sample size 610 $alump sum 610 $amarked Markov arrival process 610 $aMarkov decision process 610 $amean number of customers 610 $amean-square risk estimate 610 $aminimax approach 610 $amonotony in the Zygmund sense 610 $amultiple power series distribution 610 $amultiserver system 610 $amultivariate generalized Mittag-Leffler distribution 610 $amultivariate Linnik distribution 610 $amultivariate normal scale mixtures 610 $amultivariate stable distribution 610 $amultivariate stable processes 610 $anon-stationary Markovian queueing model 610 $anonlinear filtering problem 610 $anumerical filtering algorithm 610 $apareto mixture distribution 610 $apension schemes 610 $aperfect simulation 610 $aperturbation bounds 610 $aphase-type distribution 610 $apolicy-iteration algorithm 610 $aprecipitation 610 $apremium load 610 $apriority system 610 $aprobability density function 610 $aR-weakly one-sided oscillation of the multiple sequence at infinity along the given multiple sequence 610 $arandom sample size 610 $arandom samples 610 $arandom sum 610 $arates of convergence 610 $aRe?nyi theorem 610 $arobustness 610 $asecond order expansions 610 $aself-neglecting function 610 $aSibuya distribution 610 $aslowly varying 610 $astability 610 $astable approximation 610 $astable distribution 610 $astable estimation 610 $astate-dependent observation noise 610 $astationary renewal distribution 610 $astatistical test 610 $aStein's method 610 $astochastic differential observation system 610 $aStudent's t-distribution 610 $aTauberian lemma 610 $athreshold processing 610 $atransfer theorem 610 $auniform distance 610 $azeta-metrics 615 7$aMathematics & science 615 7$aResearch & information: general 700 $aZeifman$b Alexander$4edt$01295516 702 $aKorolev$b Victor$4edt 702 $aSipin$b Alexander$4edt 702 $aZeifman$b Alexander$4oth 702 $aKorolev$b Victor$4oth 702 $aSipin$b Alexander$4oth 906 $aBOOK 912 $a9910557664703321 996 $aStability Problems for Stochastic Models: Theory and Applications$93031971 997 $aUNINA LEADER 03640nam 22005775 450 001 9910734846503321 005 20251009083555.0 010 $a3-031-29754-7 024 7 $a10.1007/978-3-031-29754-0 035 $a(MiAaPQ)EBC30604825 035 $a(Au-PeEL)EBL30604825 035 $a(DE-He213)978-3-031-29754-0 035 $a(PPN)272271837 035 $a(CKB)27152384500041 035 $a(EXLCZ)9927152384500041 100 $a20230621d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDifferential Linear Matrix Inequalities $eIn Sampled-Data Systems Filtering and Control /$fby José C. Geromel 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (259 pages) 311 08$aPrint version: Geromel, José C. Differential Linear Matrix Inequalities Cham : Springer International Publishing AG,c2023 9783031297533 320 $aIncludes bibliographical references and index. 327 $aPreliminaries -- Differential linear matrix inequalities -- Sampled-data control systems -- H2 filtering and control -- H? filtering and control -- Markov jump linear systems -- Nonlinear systems control -- Model predictive control -- Numerical experiments. 330 $aThis book is entirely devoted to sampled-data control systems analysis and design from a new point of view, which has at its core a mathematical tool named Differential Linear Matrix Inequality - DLMI, a natural generalization of Linear Matrix Inequality - LMI, that had an important and deep impact on systems and control theory almost thirty years ago. It lasts until now. It is shown that the DLMI is well adapted to deal with the important class of sampled-data control systems in both theoretical and numerical contexts. All design conditions are expressed by convex programming problems, including when robustness against parameter uncertainty is assessed and imposed through state feedback control. Special attention is given to filter, dynamic output feedback and model predictive control design, as well as nonlinear systems of Lur?e class and Markov jump linear systems. The subject is treated with mathematical rigor, at the same time, trying to keep the reading agreeable and fruitful for colleagues and graduate students. To this respect, the book contains together with the theoretical developments, many solved illustrative examples and the formulation of some open problems that could be faced and hopefully solved by interested readers. Describes a new mathematical tool named differential linear matrix inequality (DLMI) and its applications; Presents and discusses a numerical determination of a solution whenever it exists; Includes coverage of control and filtering design problems involving sampled-data systems. . 606 $aEngineering mathematics 606 $aAutomatic control 606 $aMechatronics 606 $aEngineering Mathematics 606 $aControl and Systems Theory 606 $aMechatronics 615 0$aEngineering mathematics. 615 0$aAutomatic control. 615 0$aMechatronics. 615 14$aEngineering Mathematics. 615 24$aControl and Systems Theory. 615 24$aMechatronics. 676 $a515.642 676 $a515.642 700 $aGeromel$b Jose? C.$01373843 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910734846503321 996 $aDifferential Linear Matrix Inequalities$93404949 997 $aUNINA