LEADER 03679nam 22007215 450 001 9910734091803321 005 20210827144323.0 010 $a3-319-00861-7 024 7 $a10.1007/978-3-319-00861-5 035 $a(CKB)3390000000037160 035 $a(EBL)1317098 035 $a(OCoLC)846836780 035 $a(SSID)ssj0000935376 035 $a(PQKBManifestationID)11948042 035 $a(PQKBTitleCode)TC0000935376 035 $a(PQKBWorkID)10952915 035 $a(PQKB)10757909 035 $a(DE-He213)978-3-319-00861-5 035 $a(MiAaPQ)EBC1317098 035 $a(MiAaPQ)EBC6314565 035 $a(Au-PeEL)EBL1317098 035 $a(CaPaEBR)ebr10983321 035 $a(PPN)170489906 035 $a(EXLCZ)993390000000037160 100 $a20130524d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComputational Neuroscience $eA First Course /$fby Hanspeter A Mallot 205 $a1st ed. 2013. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2013. 215 $a1 online resource (142 p.) 225 1 $aSpringer Series in Bio-/Neuroinformatics,$x2193-9349 ;$v2 300 $aDescription based upon print version of record. 311 $a3-319-03306-9 311 $a3-319-00860-9 320 $aIncludes bibliographical references and index. 327 $aExcitable Membranes and Neural Conduction -- Receptive Fields and the Specificity of Neuronal Firing -- Coding and Representation -- Fourier Analysis for Neuroscientists -- Artificial Neural Networks. 330 $aComputational Neuroscience - A First Course provides an essential introduction to computational neuroscience and  equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience. 410 0$aSpringer Series in Bio-/Neuroinformatics,$x2193-9349 ;$v2 606 $aComputational intelligence 606 $aNeurosciences 606 $aComputational complexity 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aNeurosciences$3https://scigraph.springernature.com/ontologies/product-market-codes/B18006 606 $aComplexity$3https://scigraph.springernature.com/ontologies/product-market-codes/T11022 615 0$aComputational intelligence. 615 0$aNeurosciences. 615 0$aComputational complexity. 615 14$aComputational Intelligence. 615 24$aNeurosciences. 615 24$aComplexity. 676 $a612.80285 700 $aMallot$b Hanspeter A$4aut$4http://id.loc.gov/vocabulary/relators/aut$01371373 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910734091803321 996 $aComputational Neuroscience$93400390 997 $aUNINA