LEADER 03214nam 22006135 450 001 9910733712403321 005 20251113202845.0 010 $a981-16-7881-2 024 7 $a10.1007/978-981-16-7881-3 035 $a(MiAaPQ)EBC6838811 035 $a(Au-PeEL)EBL6838811 035 $a(CKB)20275195300041 035 $a(OCoLC)1291315954 035 $a(PPN)259388378 035 $a(DE-He213)978-981-16-7881-3 035 $a(EXLCZ)9920275195300041 100 $a20211217d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWavelet Analysis on Local Fields of Positive Characteristic /$fby Biswaranjan Behera, Qaiser Jahan 205 $a1st ed. 2021. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2021. 215 $a1 online resource (345 pages) 225 1 $aIndian Statistical Institute Series,$x2523-3122 311 08$aPrint version: Behera, Biswaranjan Wavelet Analysis on Local Fields of Positive Characteristic Singapore : Springer Singapore Pte. Limited,c2021 9789811678806 320 $aIncludes bibliographical references and index. 327 $aLocal Fields -- Multiresolution Analysis on Local Fields -- A?ne, Quasi-A?ne and Co-A?ne Frames -- Characterizations in Wavelet Analysis -- Biorthogonal Wavelets -- Wavelet Packets and Frame Packets -- Wavelets as Unconditional Bases -- Shift-Invariant Spaces and Wavelets. 330 $aThis book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces. . 410 0$aIndian Statistical Institute Series,$x2523-3122 606 $aHarmonic analysis 606 $aFourier analysis 606 $aMathematical analysis 606 $aAbstract Harmonic Analysis 606 $aFourier Analysis 606 $aAnalysis 615 0$aHarmonic analysis. 615 0$aFourier analysis. 615 0$aMathematical analysis. 615 14$aAbstract Harmonic Analysis. 615 24$aFourier Analysis. 615 24$aAnalysis. 676 $a515.2433 700 $aBehera$b Biswaranjan$01075201 702 $aJahan$b Qaiser 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910733712403321 996 $aWavelet Analysis on Local Fields of Positive Characteristic$92584198 997 $aUNINA