LEADER 08516nam 22007215 450 001 9910731486603321 005 20250620061720.0 010 $a3-031-30337-7 024 7 $a10.1007/978-3-031-30337-1 035 $a(CKB)26946495500041 035 $a(MiAaPQ)EBC30593498 035 $a(Au-PeEL)EBL30593498 035 $a(DE-He213)978-3-031-30337-1 035 $a(PPN)272260533 035 $a(EXLCZ)9926946495500041 100 $a20230613d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMore-for-Less Solutions in Fuzzy Transportation Problems /$fby Tanveen Kaur Bhatia, Amit Kumar, Srimantoorao S. Appadoo 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (169 pages) 225 1 $aStudies in Fuzziness and Soft Computing,$x1860-0808 ;$v426 311 08$a9783031303364 320 $aIncludes bibliographical references. 327 $aIntro -- Acknowledgements -- Contents -- About the Authors -- 1 Introduction -- 1.1 Origin of More-For-Less Solutions of Transportation Problems -- 1.2 Literature Review -- 1.3 Chapter-Wise Summary -- References -- 2 Mehar Method-I to Find All More-For-Less Solutions of Symmetric Fuzzy Balanced Transportation Problems -- 2.1 Some Basic Definitions -- 2.2 Tabular Representation of Crisp Balanced Transportation Problems -- 2.3 Tabular Representation of Symmetric Triangular Fuzzy Balanced Transportation Problems -- 2.4 Crisp Linear Programming Problems Corresponding to Crisp Balanced Transportation Problems -- 2.5 Fuzzy Linear Programming Problems Corresponding to Symmetric Triangular Fuzzy Balanced Transportation Problems -- 2.6 Crisp Balanced Transportation Problems Equivalent to Symmetric Triangular Fuzzy Balanced Transportation Problems -- 2.7 Proposed Sufficient Condition-I for the Existence of at Least One More-For-Less Solution -- 2.8 Proposed Mehar Method-I -- 2.9 Illustrative Examples -- 2.9.1 All More-For-Less Solutions of an Existing Problem -- 2.9.2 All More-For-Less Solutions of Considered Problem -- 2.10 Results and Discussion -- 2.11 Conclusions -- References -- 3 Mehar Method-II to Find All More-For-Less Solutions of Symmetric Fuzzy Transportation Problems with Mixed Constraints -- 3.1 Tabular Representation of Crisp Transportation Problems with Mixed Constraints -- 3.2 Tabular Representation of Symmetric Triangular Fuzzy Transportation Problems with Mixed Constraints -- 3.3 Crisp Linear Programming Problems Corresponding to Crisp Transportation Problems with Mixed Constraints -- 3.4 Fuzzy Linear Programming Problems Corresponding to Symmetric Triangular Fuzzy Transportation Problems with Mixed Constraints. 327 $a3.5 Crisp Transportation Problems with Mixed Constraints Equivalent to Symmetric Triangular Fuzzy Transportation Problems with Mixed Constraints -- 3.6 Proposed Sufficient Condition-II for the Existence of at Least One More-For-Less Solution -- 3.7 Proposed Mehar Method-II -- 3.8 All More-For-Less Solutions of Existing Problems -- 3.8.1 All More-For-Less Solutions of the First Problem -- 3.8.2 All More-For-Less Solutions of the Second Problem -- 3.9 Results and Discussion -- 3.9.1 Response of the First Question -- 3.9.2 Response of the Second Question -- 3.9.3 Response of the Third Question -- 3.9.4 Response of the Fourth Question -- 3.10 Conclusions -- References -- 4 Mehar Method-III to Find All More-for-Less Solutions of Symmetric Intuitionistic Fuzzy Transportation Problems with Mixed Constraints -- 4.1 Some Basic Definitions -- 4.2 Extended Arithmetic Operations of Triangular Intuitionistic Fuzzy Numbers -- 4.3 Extended Method for Comparing Triangular Intuitionistic Fuzzy Numbers -- 4.4 Some Important Results -- 4.4.1 Proof of the First Result -- 4.4.2 Proof of the Second Result -- 4.4.3 Proof of the Third Result -- 4.4.4 Proof of the Fourth Result -- 4.5 Tabular Representation of Symmetric Triangular Intuitionistic Fuzzy Transportation Problems with Mixed Constraints -- 4.6 Intuitionistic Fuzzy Linear Programming Problems Corresponding to Symmetric Triangular Intuitionistic Fuzzy Transportation Problems with Mixed Constraints -- 4.7 Crisp Transportation Problem Equivalent to Symmetric Intuitionistic Fuzzy Transportation Problem -- 4.8 Proposed Sufficient Condition-III for the Existence of at Least One More-for-Less Solution -- 4.9 Proposed Mehar Method-III -- 4.10 Illustrative Example -- 4.11 Conclusions -- References. 327 $a5 Mehar Method-IV to Find All More-For-Less Solutions of Symmetric Intuitionistic Fuzzy Linear Fractional Transportation Problems with Mixed Constraints -- 5.1 Tabular Representation of Crisp Linear Fractional Transportation Problems with Mixed Constraints -- 5.2 Tabular Representation of Symmetric Triangular Intuitionistic Fuzzy Linear Fractional Transportation Problems with Mixed Constraints -- 5.3 Crisp Linear Fractional Programming Problems Corresponding to Crisp Linear Fractional Transportation Problem with Mixed Constraints -- 5.4 Intuitionistic Fuzzy Linear Fractional Programming Problems Corresponding to Symmetric Triangular Intuitionistic Fuzzy Linear Fractional Transportation Problem with Mixed Constraints -- 5.5 Crisp Linear Fractional Transportation Problem with Mixed Constraints Equivalent to Symmetric Triangular Intuitionistic Fuzzy Linear Fractional Transportation Problem with Mixed Constraints -- 5.6 Proposed Sufficient Condition-IV for the Existence of at Least One More-For-Less Solution -- 5.6.1 Origin of the Sufficient Condition (5.1a) -- 5.6.2 Origin of the Sufficient Condition (5.1b) -- 5.7 Proposed Mehar Method-IV -- 5.8 Illustrative Examples -- 5.8.1 All More-For-Less Solutions of the First Existing Problem -- 5.8.2 All More-For-Less Solutions of the Second Existing Problem -- 5.8.3 All More-For-Less Solutions of the Considered Problem -- 5.9 Results and Discussion -- 5.9.1 Response of the First Question -- 5.9.2 Response of the Second Question -- 5.10 Conclusions -- References -- 6 Some Open Research Problems -- 6.1 First Open Research Problem -- 6.2 Second Open Research Problem -- 6.3 Third Open Research Problem -- 6.4 Fourth Open Research Problem -- 6.5 Fifth Open Research Problem -- References. 330 $aThis book describes a set of methods for finding more-for-less solutions of various kind of fuzzy transportation problems. Inspired by more-for-less approaches to the basic transportation problem initiated by Abraham Charnes and his collaborators during 1960s and 1970s, this book describes new methods developed by the authors to solve different types of problems, including symmetric balanced fuzzy transportation problems, symmetric intuitionistic fuzzy transportation problems with mixed constraints, and symmetric intuitionistic fuzzy linear fractional transportation problems with mixed constraints. It offers extensive details on their applications to some representative problems, and discusses some future research directions. 410 0$aStudies in Fuzziness and Soft Computing,$x1860-0808 ;$v426 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aTransportation engineering 606 $aTraffic engineering 606 $aOperations research 606 $aManagement science 606 $aMathematical and Computational Engineering Applications 606 $aTransportation Technology and Traffic Engineering 606 $aOperations Research, Management Science 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aTransportation engineering. 615 0$aTraffic engineering. 615 0$aOperations research. 615 0$aManagement science. 615 14$aMathematical and Computational Engineering Applications. 615 24$aTransportation Technology and Traffic Engineering. 615 24$aOperations Research, Management Science. 676 $a510 676 $a388.310285 700 $aBhatia$b Tanveen Kaur$01368651 702 $aKumar$b Amit 702 $aAppadoo$b Srimantoorao S. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910731486603321 996 $aMore-for-less solutions in fuzzy transportation problems$93554497 997 $aUNINA