LEADER 02588nam 22006255 450 001 9910729895503321 005 20251008153515.0 010 $a3-031-26455-X 024 7 $a10.1007/978-3-031-26455-9 035 $a(CKB)26881911200041 035 $a(MiAaPQ)EBC7260464 035 $a(Au-PeEL)EBL7260464 035 $a(DE-He213)978-3-031-26455-9 035 $a(PPN)272263907 035 $a(MiAaPQ)EBC7260453 035 $a(EXLCZ)9926881911200041 100 $a20230607d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometry of Linear Matrix Inequalities $eA Course in Convexity and Real Algebraic Geometry with a View Towards Optimization /$fby Tim Netzer, Daniel Plaumann 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2023. 215 $a1 online resource (167 pages) 225 1 $aCompact Textbooks in Mathematics,$x2296-455X 311 08$a9783031264542 320 $aIncludes bibliographical references. 330 $aThis textbook provides a thorough introduction to spectrahedra, which are the solution sets to linear matrix inequalities, emerging in convex and polynomial optimization, analysis, combinatorics, and algebraic geometry. Including a wealth of examples and exercises, this textbook guides the reader in helping to determine the convex sets that can be represented and approximated as spectrahedra and their shadows (projections). Several general results obtained in the last 15 years by a variety of different methods are presented in the book, along with the necessary background from algebra and geometry. 410 0$aCompact Textbooks in Mathematics,$x2296-455X 606 $aGeometry, Algebraic 606 $aConvex geometry 606 $aDiscrete geometry 606 $aMathematical optimization 606 $aAlgebraic Geometry 606 $aConvex and Discrete Geometry 606 $aOptimization 615 0$aGeometry, Algebraic. 615 0$aConvex geometry. 615 0$aDiscrete geometry. 615 0$aMathematical optimization. 615 14$aAlgebraic Geometry. 615 24$aConvex and Discrete Geometry. 615 24$aOptimization. 676 $a929.605 700 $aNetzer$b Tim$01368018 702 $aPlaumann$b Daniel 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910729895503321 996 $aGeometry of Linear Matrix Inequalities$93392323 997 $aUNINA