LEADER 04917nam 22005895 450 001 9910728952503321 005 20251009085001.0 010 $a3-031-31004-7 024 7 $a10.1007/978-3-031-31004-1 035 $a(MiAaPQ)EBC30562368 035 $a(Au-PeEL)EBL30562368 035 $a(OCoLC)1381479818 035 $a(DE-He213)978-3-031-31004-1 035 $a(BIP)089626042 035 $a(CKB)26821622200041 035 $a(EXLCZ)9926821622200041 100 $a20230601d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUnderstanding the Impact of Machine Learning on Labor and Education $eA Time-Dependent Turing Test /$fby Joseph Ganem 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (88 pages) 225 1 $aSpringerBriefs in Philosophy,$x2211-4556 311 08$aPrint version: Ganem, Joseph Understanding the Impact of Machine Learning on Labor and Education Cham : Springer,c2023 9783031310034 327 $aIntroduction: The difference between knowing and learning -- Labor Markets: Comparative learning advantages -- Learning to Work: The two dimensions of job performance -- The Judgment Game: The Turing Test as a general research framework -- The Learning Game: A time-dependent Turing Test -- Implications: Recommendations for future education and labor policies. 330 $aThis book provides a novel framework for understanding and revising labor markets and education policies in an era of machine learning. It posits that while learning and knowing both require thinking, learning is fundamentally different than knowing because it results in cognitive processes that change over time. Learning, in contrast to knowing, requires time and agency. Therefore, ?learning algorithms??that enable machines to modify their actions based on real-world experiences?are a fundamentally new form of artificial intelligence that have potential to be even more disruptive to labor markets than prior introductions of digital technology. To explore the difference between knowing and learning, Turing?s ?Imitation Game,??that he proposed as a test for machine thinking?is expanded to include time dependence. The arguments presented in the book introduce three novel concepts: (1) Comparative learning advantage: This is a concept analogous to comparative labor advantagebut arises from the disparate times required to learn new knowledge bases/skillsets. It is argued that in the future, comparative learning advantages between humans and machines will determine their division of labor. (2) Two dimensions of job performance?expertise and interpersonal: Job tasks can be sorted into two broad categories. Tasks that require expertise have stable endpoints, which makes these tasks inherently repetitive and subject to automation. Tasks that are interpersonal are highly context-dependent and lack stable endpoints, which makes these tasks inherently non-routine. Humans compared to machines have a comparative learning advantage along the interpersonal dimension, which is increasing in value economically. (3) The Learning Game is a time-dependent version of Turing?s ?Imitation Game.? It is more than a thought experiment. The ?Learning Game? provides a mathematical framework with quantitative criteria for training and assessing comparative learningadvantages. The book is highly interdisciplinary?presenting philosophical arguments in economics, artificial intelligence, and education. It also provides data, mathematical analysis, and testable criteria that researchers in these fields will find of practical use. The book calls for a rethinking of how labor markets operate and how the education system should prepare students for future jobs. It concludes with a list of counterintuitive recommendations for future education and labor policies that all stakeholders?employers, employees, educators, students, and political leaders?should heed. 410 0$aSpringerBriefs in Philosophy,$x2211-4556 606 $aTechnology$xPhilosophy 606 $aArtificial intelligence 606 $aMachine learning 606 $aPhilosophy of Technology 606 $aArtificial Intelligence 606 $aMachine Learning 615 0$aTechnology$xPhilosophy. 615 0$aArtificial intelligence. 615 0$aMachine learning. 615 14$aPhilosophy of Technology. 615 24$aArtificial Intelligence. 615 24$aMachine Learning. 676 $a006.3101 700 $aGanem$b Joseph$01061194 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910728952503321 996 $aUnderstanding the Impact of Machine Learning on Labor and Education$93384499 997 $aUNINA