LEADER 03481nam 22007215 450 001 9910728934203321 005 20251008145123.0 010 $a3-031-21480-3 024 7 $a10.1007/978-3-031-21480-6 035 $a(MiAaPQ)EBC7255389 035 $a(Au-PeEL)EBL7255389 035 $a(OCoLC)1381713790 035 $a(DE-He213)978-3-031-21480-6 035 $a(BIP)085993184 035 $a(PPN)272260614 035 $a(CKB)26830196500041 035 $a(EXLCZ)9926830196500041 100 $a20230602d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplied Linear Regression for Business Analytics with R $eA Practical Guide to Data Science with Case Studies /$fby Daniel P. McGibney 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (286 pages) 225 1 $aInternational Series in Operations Research & Management Science,$x2214-7934 ;$v337 311 08$aPrint version: McGibney, Daniel P. Applied Linear Regression for Business Analytics with R Cham : Springer International Publishing AG,c2023 9783031214790 320 $aIncludes bibliographical references. 327 $a1. Introduction -- 2. Basic Statistics and Functions using R -- 3. Regression Fundamentals -- 4. Simple Linear Regression -- 5. Multiple Regression -- 6. Estimation Intervals and Analysis of Variance -- 7. Predictor Variable Transformations -- 8. Model Diagnostics -- 9. Variable Selection. 330 $aApplied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language. 410 0$aInternational Series in Operations Research & Management Science,$x2214-7934 ;$v337 606 $aOperations research 606 $aRegression analysis 606 $aBusiness information services 606 $aBusiness$xData processing 606 $aMathematical statistics$xData processing 606 $aOperations Research and Decision Theory 606 $aLinear Models and Regression 606 $aIT in Business 606 $aBusiness Analytics 606 $aStatistics and Computing 615 0$aOperations research. 615 0$aRegression analysis. 615 0$aBusiness information services. 615 0$aBusiness$xData processing. 615 0$aMathematical statistics$xData processing. 615 14$aOperations Research and Decision Theory. 615 24$aLinear Models and Regression. 615 24$aIT in Business. 615 24$aBusiness Analytics. 615 24$aStatistics and Computing. 676 $a650.0285 676 $a650.0285 700 $aMcGibney$b Daniel P.$01365685 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910728934203321 996 $aApplied Linear Regression for Business Analytics with R$93387840 997 $aUNINA