LEADER 03735nam 22007335 450 001 9910726294403321 005 20251009082254.0 010 $a3-031-29692-3 024 7 $a10.1007/978-3-031-29692-5 035 $a(CKB)26748006900041 035 $a(MiAaPQ)EBC7248754 035 $a(Au-PeEL)EBL7248754 035 $a(DE-He213)978-3-031-29692-5 035 $a(BIP)089067526 035 $a(PPN)270619704 035 $a(MiAaPQ)EBC7248544 035 $a(EXLCZ)9926748006900041 100 $a20230511d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnhancement of Grid-Connected Photovoltaic Systems Using Artificial Intelligence /$fby Amal M. Abd El- Hameid, Adel A. Elbaset, Mohamed Ebeed, Montaser Abdelsattar 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2023. 215 $a1 online resource (243 pages) 311 08$a9783031296918 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Power Quality Issues -- Stochastic Optimal Planning of Distribution System Considering Integrated Photovoltaic-Based DG and D-STATCOM -- Optimal Allocation of Distributed Energy Resources Using Modern Optimization Techniques -- Results and Discussion -- Conclusions and Future Work. 330 $aEnhancement of Grid-Connected Photovoltaic Systems Using Artificial Intelligence presents methods for monitoring transmission systems and enhancing distribution system performance using modern optimization techniques considering different multi-objective functions such as voltage loss sensitivity indexes, reducing total annual cost, and voltage deviation. The authors offer a comprehensive survey of distributed energy resources (DERs), explain the backward/forward sweep (BFS) power flow algorithm, and present simulation results on the optimal integration of photovoltaic-based distributed generators (PV-DG) and distribution static synchronous compensators (DSTATCOM) in different transmission and distribution systems. This book will be a valuable academic and industry resource for electrical engineers, students, and researchers working on optimization techniques, photovoltaic systems, energy engineering, and artificial intelligence. Covers developmentsto enhance the integration of renewable energy sources; Presents simulation results, including standard IEEE bus test systems; Includes MATLAB M-file codes. 606 $aPhotovoltaic power generation 606 $aRenewable energy sources 606 $aElectric power distribution 606 $aPower electronics 606 $aElectric power-plants 606 $aPhotovoltaics 606 $aRenewable Energy 606 $aEnergy Grids and Networks 606 $aPower Electronics 606 $aPower Stations 615 0$aPhotovoltaic power generation. 615 0$aRenewable energy sources. 615 0$aElectric power distribution. 615 0$aPower electronics. 615 0$aElectric power-plants. 615 14$aPhotovoltaics. 615 24$aRenewable Energy. 615 24$aEnergy Grids and Networks. 615 24$aPower Electronics. 615 24$aPower Stations. 676 $a621.31244 676 $a621.31244 700 $aHameid$b Amal M. Abd El-$01364783 702 $aEbeed$b Mohamed 702 $aAbdelsattar$b Montaser 702 $aAbd El-Hameid$b Amal M. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910726294403321 996 $aEnhancement of grid-connected photovoltaic systems using artificial intelligence$93417339 997 $aUNINA