LEADER 01049nam0-2200301 --450 001 9910722500903321 005 20230606085321.0 010 $a9791259763310 020 $aIT$b2022-8611 100 $a20230605d2022----kmuy0itay5050 ba 101 1 $aita$cita 102 $aIT 105 $a 001yy 200 1 $a<>gestione dell'emergenza sanitaria tra diritto e tecnica$fa cura di Antonio Iannuzzi e Giovanna Pistorio 210 $aNapoli$cEditoriale scientifica$d2022 215 $aVIII, 378 p.$d24 cm 225 1 $aCollana CRISPEL$fUniversità degli studi Roma Tre. Sezione di diritto pubblico italiano ed europeo. Collettanee$v12 300 $aAtti del Seminario tenuto a Roma nel 2021 676 $a362.1962414400945$v23$zita 702 1$aPistorio,$bGiovanna 702 1$aIannuzzi,$bAntonio 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910722500903321 952 $aI C 496$b2023/79$fFGBC 959 $aFGBC 996 $aGestione dell'emergenza sanitaria tra diritto e tecnica$93368318 997 $aUNINA LEADER 05584nam 2200721 a 450 001 9910783519403321 005 20230106010000.0 010 $a1-280-53982-8 010 $a9786610539826 010 $a0-470-32298-5 010 $a0-471-71624-3 010 $a0-471-71622-7 035 $a(CKB)1000000000244126 035 $a(EBL)226625 035 $a(OCoLC)559973667 035 $a(SSID)ssj0000177058 035 $a(PQKBManifestationID)11153829 035 $a(PQKBTitleCode)TC0000177058 035 $a(PQKBWorkID)10216253 035 $a(PQKB)11449994 035 $a(MiAaPQ)EBC226625 035 $a(Au-PeEL)EBL226625 035 $a(CaPaEBR)ebr10114201 035 $a(CaONFJC)MIL53982 035 $a(MiAaPQ)EBC7147411 035 $a(Au-PeEL)EBL7147411 035 $a(EXLCZ)991000000000244126 100 $a20040818d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aImpedance spectroscopy$b[electronic resource] $etheory, experiment, and applications 205 $a2nd ed. /$bedited by Evgenij Barsoukov, J. Ross Macdonald. 210 $aHoboken, N.J. $cWiley-Interscience$dc2005 215 $a1 online resource (615 p.) 300 $aDescription based upon print version of record. 311 $a0-471-64749-7 320 $aIncludes bibliographical references (p. 541-581) and index. 327 $aImpedance Spectroscopy; Contents; Preface; Preface to the First Edition; Contributors; Contributors to the First Edition; 1. Fundamentals of Impedance Spectroscopy; 1.1 Background, Basic Definitions, and History; 1.1.1 The Importance of Interfaces; 1.1.2 The Basic Impedance Spectroscopy Experiment; 1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain; 1.1.4 Impedance-Related Functions; 1.1.5 Early History; 1.2 Advantages and Limitations; 1.2.1 Differences Between Solid State and Aqueous Electrochemistry; 1.3 Elementary Analysis of Impedance Spectra 327 $a1.3.1 Physical Models for Equivalent Circuit Elements1.3.2 Simple RC Circuits; 1.3.3 Analysis of Single Impedance Arcs; 1.4 Selected Applications of IS; 2. Theory; 2.1 The Electrical Analogs of Physical and Chemical Processes; 2.1.1 Introduction; 2.1.2 The Electrical Properties of Bulk Homogeneous Phases; 2.1.2.1 Introduction; 2.1.2.2 Dielectric Relaxation in Materials with a Single Time Constant; 2.1.2.3 Distributions of Relaxation Times; 2.1.2.4 Conductivity and Diffusion in Electrolytes; 2.1.2.5 Conductivity and Diffusion-a Statistical Description 327 $a2.1.2.6 Migration in the Absence of Concentration Gradients2.1.2.7 Transport in Disordered Media; 2.1.3 Mass and Charge Transport in the Presence of Concentration Gradients; 2.1.3.1 Diffusion; 2.1.3.2 Mixed Electronic-Ionic Conductors; 2.1.3.3 Concentration Polarization; 2.1.4 Interfaces and Boundary Conditions; 2.1.4.1 Reversible and Irreversible Interfaces; 2.1.4.2 Polarizable Electrodes; 2.1.4.3 Adsorption at the Electrode-Electrolyte Interface; 2.1.4.4 Charge Transfer at the Electrode-Electrolyte Interface; 2.1.5 Grain Boundary Effects 327 $a2.1.6 Current Distribution, Porous and Rough Electrodes-the Effect of Geometry2.1.6.1 Current Distribution Problems; 2.1.6.2 Rough and Porous Electrodes; 2.2 Physical and Electrochemical Models; 2.2.1 The Modeling of Electrochemical Systems; 2.2.2 Equivalent Circuits; 2.2.2.1 Unification of Immitance Responses; 2.2.2.2 Distributed Circuit Elements; 2.2.2.3 Ambiguous Circuits; 2.2.3 Modeling Results; 2.2.3.1 Introduction; 2.2.3.2 Supported Situations; 2.2.3.3 Unsupported Situations: Theoretical Models; 2.2.3.4 Unsupported Situations: Equivalent Network Models 327 $a2.2.3.5 Unsupported Situations: Empirical and Semiempirical Models3. Measuring Techniques and Data Analysis; 3.1 Impedance Measurement Techniques; 3.1.1 Introduction; 3.1.2 Frequency Domain Methods; 3.1.2.1 Audio Frequency Bridges; 3.1.2.2 Transformer Ratio Arm Bridges; 3.1.2.3 Berberian-Cole Bridge; 3.1.2.4 Considerations of Potentiostatic Control; 3.1.2.5 Oscilloscopic Methods for Direct Measurement; 3.1.2.6 Phase-Sensitive Detection for Direct Measurement; 3.1.2.7 Automated Frequency Response Analysis; 3.1.2.8 Automated Impedance Analyzers; 3.1.2.9 The Use of Kramers-Kronig Transforms 327 $a3.1.2.10 Spectrum Analyzers 330 $aA skillful balance of theoretical considerations and practical know-howBacked by a team of expert contributors, the Second Edition of this highly acclaimed publication brings a solid understanding of impedance spectroscopy to students, researchers, and engineers in physical chemistry, electrochemistry, and physics. Starting with general principles, the book moves on to explain in detail practical applications for the characterization of materials in electrochemistry, semiconductors, solid electrolytes, corrosion, solid-state devices, and electrochemical power sources. The book covers all o 606 $aImpedance spectroscopy$vTextbooks 606 $aImpedance spectroscopy$xExperiments 606 $aElectrochemical analysis$xExperiments 615 0$aImpedance spectroscopy 615 0$aImpedance spectroscopy$xExperiments. 615 0$aElectrochemical analysis$xExperiments. 676 $a543/.4 701 $aBarsoukov$b Evgenij$0942929 701 $aMacdonald$b J. Ross$g(James Ross),$f1923-$0150281 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783519403321 996 $aImpedance spectroscopy$92127849 997 $aUNINA