LEADER 00894nas 2200337- 450 001 996197459903316 005 20220816213023.0 035 $a(OCoLC)620044749 035 $a(CKB)110975955581244 035 $a(CONSER)--2022243138 035 $a(EXLCZ)99110975955581244 100 $a20100518b19891996 --- a 101 0 $aeng 135 $aurbn||||||abp 135 $aurbn||||||ada 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Catholic world 210 1$aMahwah, N.J. :$cPaulist Press,$d©1989-©1996. 215 $a1 online resource 311 $a1042-3494 531 $aCATHOLIC WORLD 608 $aPeriodicals.$2fast 608 $aPeriodicals.$2lcgft 676 $a282/.05 712 02$aPaulist Fathers, 906 $aJOURNAL 912 $a996197459903316 996 $aThe Catholic world$91940254 997 $aUNISA LEADER 05848nam 22008055 450 001 9910720077703321 005 20250315115707.0 010 $a9783031196355$b(electronic bk.) 010 $z9783031196348 024 7 $a10.1007/978-3-031-19635-5 035 $a(MiAaPQ)EBC7241947 035 $a(Au-PeEL)EBL7241947 035 $a(OCoLC)1377820033 035 $a(DE-He213)978-3-031-19635-5 035 $a(PPN)269659390 035 $a(CKB)26523132700041 035 $a(EXLCZ)9926523132700041 100 $a20230426d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume II $eOvercoming the Curse of Dimensionality: Large-Scale Application /$fby Dan Gabriel Cacuci, Ruixian Fang 205 $a1st ed. 2023. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2023. 215 $a1 online resource (474 pages) 311 08$aPrint version: Cacuci, Dan Gabriel The Nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume II Cham : Springer International Publishing AG,c2023 9783031196348 320 $aIncludes bibliographical references and index. 327 $aChapter1. 1st-Order Sensitivity Analysis of the OECD/NEA PERP Reactor Physics Benchmark -- Chapter2. 2nd-Order Sensitivities of the PERP Benchmark to the Microscopic Total and Capture Cross Sections -- Chapter3. 2nd-Order Sensitivities of the PERP Benchmark to the Microscopic Scattering Cross Sections -- Chapter4. 2nd-Order Sensitivities of the PERP Benchmark to the Microscopic Fission Cross Sections -- Chapter5. 2nd-Order Sensitivities of the PERP Benchmark to the Average Number of Neutrons per Fission -- Chapter6. 2nd-Order Sensitivities of the PERP Benchmark to the Spontaneous Fission Source Parameters -- Chapter7. 2nd-Order Sensitivities of the PERP Benchmark to the Isotopic Number Densities -- Chapter8. 3rd-Order Sensitivities of the PERP Benchmark -- Chapter9. 4th-Order Sensitivities of the PERP Benchmark -- Chapter10. Overall Impact of 1st-, 2nd-, 3rd-, and 4th-Order Sensitivities on the PERP Benchmark's Response Uncertainties. 330 $aThis text describes a comprehensive adjoint sensitivity analysis methodology (C-ASAM), developed by the author, enabling the efficient and exact computation of arbitrarily high-order functional derivatives of model responses to model parameters in large-scale systems. The C-ASAM framework is set in linearly increasing Hilbert spaces, each of state-function-dimensionality, as opposed to exponentially increasing parameter-dimensional spaces, thereby breaking the so-called ?curse of dimensionality? in sensitivity and uncertainty analysis. The C-ASAM applies to any model; the larger the number of model parameters, the more efficient the C-ASAM becomes for computing arbitrarily high-order response sensitivities. The book will be helpful to those working in the fields of sensitivity analysis, uncertainty quantification, model validation, optimization, data assimilation, model calibration, sensor fusion, reduced-order modelling, inverse problems and predictive modelling. This Volume Two, the second of three, presents the large-scale application of C-ASAM to compute exactly the first-, second-, third-, and fourth-order sensitivities of the Polyethylene-Reflected Plutonium (PERP) OECD/NEO international benchmark which is modeled mathematically by the Boltzmann particle transport equation. It follows from the description of the C-ASAM framework applied to linear systems in Volume One where the PERP benchmark's response of interest is the leakage of particles through its outer boundary. The benchmark represents the largest sensitivity analysis endeavor ever carried out in the field of reactor physics and the numerical results shown in this book prove, for the first time ever, that many of the second-order sensitivities are much larger than the corresponding first-order ones. Currently, the nth-CASAM is the only known methodology which enables such large-scale computations of the exact expressions and values of the nth-order response sensitivities. 606 $aMathematical physics 606 $aComputer simulation 606 $aMathematical models 606 $aStatistics 606 $aEnergy policy 606 $aEnergy policy 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aNuclear physics 606 $aComputational Physics and Simulations 606 $aMathematical Modeling and Industrial Mathematics 606 $aStatistical Theory and Methods 606 $aEnergy Policy, Economics and Management 606 $aMathematical and Computational Engineering Applications 606 $aNuclear Physics 615 0$aMathematical physics. 615 0$aComputer simulation. 615 0$aMathematical models. 615 0$aStatistics. 615 0$aEnergy policy. 615 0$aEnergy policy. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aNuclear physics. 615 14$aComputational Physics and Simulations. 615 24$aMathematical Modeling and Industrial Mathematics. 615 24$aStatistical Theory and Methods. 615 24$aEnergy Policy, Economics and Management. 615 24$aMathematical and Computational Engineering Applications. 615 24$aNuclear Physics. 676 $a003.5 700 $aCacuci$b Dan Gabriel$0897247 702 $aFang$b Ruixian 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910720077703321 996 $aThe nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology, Volume II$94349784 997 $aUNINA