LEADER 03726nam 22007095 450 001 9910717417203321 005 20251216132159.0 010 $a9783031270956$b(electronic bk.) 010 $z9783031270949 024 7 $a10.1007/978-3-031-27095-6 035 $a(MiAaPQ)EBC7241376 035 $a(Au-PeEL)EBL7241376 035 $a(OCoLC)1377817060 035 $a(DE-He213)978-3-031-27095-6 035 $a(PPN)269660720 035 $a(CKB)26523189800041 035 $a(EXLCZ)9926523189800041 100 $a20230425d2023 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDynamics through First-Order Differential Equations in the Configuration Space /$fby Jaume Llibre, Rafael Ramírez, Valentín Ramírez 205 $a1st ed. 2023. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Birkhäuser,$d2023. 215 $a1 online resource (360 pages) 311 08$aPrint version: Llibre, Jaume Dynamics Through First-Order Differential Equations in the Configuration Space Cham : Springer International Publishing AG,c2023 9783031270949 320 $aIncludes bibliographical references and index. 327 $aChapter. 1. Dynamics via the first order ordinary differential equations -- Chapter. 2. Constrained Cartesian vector fields -- Chapter. 3. Three dimensional constrained Cartesian vector fields -- Chapter. 4. Cartesian-Synge-Cinsov vector field -- Chapter. 5. Generalized Cartesian-Nambu vector fields -- Chapter. 6. Integrability of generalized Cartesian-Nambu vector fields. 330 $aThe goal of this monograph is to answer the question, is it possible to solve the dynamics problem inside the configuration space instead of the phase space? By introducing a proper class of vector field ? the Cartesian vector field ? given in a Riemann space, the authors explore the connections between the first order ordinary differential equations (ODEs) associated to the Cartesian vector field in the configuration space of a given mechanical system and its dynamics. The result is a new perspective for studying the dynamics of mechanical systems, which allows the authors to present new cases of integrability for the Suslov and Veselova problem; establish the relation between the Cartesian vector field and the integrability of the geodesic flow in a special class of homogeneous surfaces; discuss the importance of the Nambu bracket in the study of first order ODEs; and offer a solution of the inverse problem in celestial mechanics. 606 $aDifferential equations 606 $aDynamics 606 $aGeometry, Differential 606 $aMathematical physics 606 $aDifferential Equations 606 $aDynamical Systems 606 $aDifferential Geometry 606 $aMathematical Physics 606 $aDinàmica$2thub 606 $aEquacions diferencials$2thub 608 $aLlibres electrònics$2thub 615 0$aDifferential equations. 615 0$aDynamics. 615 0$aGeometry, Differential. 615 0$aMathematical physics. 615 14$aDifferential Equations. 615 24$aDynamical Systems. 615 24$aDifferential Geometry. 615 24$aMathematical Physics. 615 7$aDinàmica 615 7$aEquacions diferencials 676 $a620.104 700 $aLlibre$b Jaume$053452 702 $aRami?rez$b Rafael$c(Computer scientist) 702 $aRami?rez$b Valenti?n 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910717417203321 996 $aDynamics through first-order differential equations in the configuration space$93417387 997 $aUNINA