LEADER 01542nam 2200385 450 001 9910717268403321 005 20220310155220.0 035 $a(CKB)5470000002529540 035 $a(OCoLC)1302888551 035 $a(EXLCZ)995470000002529540 100 $a20220310d2021 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA machine learning framework for bridging the gap between the steady-state scheduling and dynamic security operation for future power grids /$fJin Tan 210 1$a[Golden, Colo.] :$cNational Renewable Energy Laboratory,$d2021. 215 $a1 online resource (23 pages) $ccolor illustrations, color maps 225 1 $aNREL/PR ;$v5C00-80488 300 $aSlideshow presentation. 300 $a"7/26/2021; presented at IEEE PES GM 2021." 606 $aMachine learning 606 $aElectric power distribution$xSecurity measures$zUnited States 615 0$aMachine learning. 615 0$aElectric power distribution$xSecurity measures 700 $aTan$b Jin$c(Engineer),$01202843 712 02$aNational Renewable Energy Laboratory (U.S.), 712 02$aUnited States.$bDepartment of Energy.$bSolar Energy Technologies Office, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910717268403321 996 $aA machine learning framework for bridging the gap between the steady-state scheduling and dynamic security operation for future power grids$93445209 997 $aUNINA