LEADER 02291oam 2200637 450 001 9910716897003321 005 20210914090738.0 035 $a(CKB)5470000002525211 035 $a(OCoLC)680566387$z(OCoLC)623186761$z(OCoLC)667865767$z(OCoLC)985367113$z(OCoLC)1153329519 035 $a(OCoLC)995470000002525211 035 $a(EXLCZ)995470000002525211 100 $a20101111d1998 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStreamflow, water-quality, and biological conditions in the Big Black Creek Basin, St. Clair County, Alabama, 1997 /$fby C.A. Journey, A.E. Clark, and V.E. Stricklin ; prepared in cooperation with the city of Moody, St. Clair County, and Birmingham Water Works 210 1$aMontgomery, Alabama :$cU.S. Geological Survey,$d1998. 215 $a1 online resource (iv, 52 pages) $cillustrations, maps 225 1 $aWater-resources investigations report ;$v98-4127 320 $aIncludes bibliographical references (pages 40-42). 606 $aStreamflow$zAlabama$zSaint Clair County 606 $aWater quality$zAlabama$zSaint Clair County 606 $aValley ecology$zAlabama$zSaint Clair County 606 $aStreamflow$2fast 606 $aValley ecology$2fast 606 $aWater quality$2fast 607 $aAlabama$zSaint Clair County$2fast 615 0$aStreamflow 615 0$aWater quality 615 0$aValley ecology 615 7$aStreamflow. 615 7$aValley ecology. 615 7$aWater quality. 700 $aJourney$b Celeste A.$01388383 702 $aClark$b A. E. 702 $aStricklin$b V. E. 712 02$aGeological Survey (U.S.), 712 02$aMoody (Ala.) 712 02$aSaint Clair County (Ala.) 712 02$aWater Works and Sewer Board of the City of Birmingham. 801 0$bOCLCE 801 1$bOCLCE 801 2$bOCLCQ 801 2$bOCLCF 801 2$bOCLCQ 801 2$bOCLCO 801 2$bOCLCQ 801 2$bCOP 801 2$bOCLCQ 801 2$bGPO 906 $aBOOK 912 $a9910716897003321 996 $aStreamflow, water-quality, and biological conditions in the Big Black Creek Basin, St. Clair County, Alabama, 1997$93438915 997 $aUNINA LEADER 13023nam 2200613 450 001 9910819610903321 005 20230928101921.0 010 $a1-5231-2383-4 010 $a1-119-42687-1 010 $a1-119-42685-5 010 $a1-119-42679-0 035 $a(CKB)4100000000981072 035 $a(Au-PeEL)EBL4987362 035 $a(CaPaEBR)ebr11503731 035 $a(Au-PeEL)EBL5267713 035 $a(CaONFJC)MIL1043680 035 $a(OCoLC)1001287806 035 $a(MiAaPQ)EBC4987362 035 $a(EXLCZ)994100000000981072 100 $a20180216h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aTextile finishing $erecent developments and future trends /$fedited by K.L. Mittal and Thomas Bahners 205 $a1st ed. 210 1$aHoboken, New Jersey ;$aBeverly, Massachusetts :$cScrivener Publishing :$cWiley,$d2017. 210 4$d©2017 215 $a1 online resource (586 pages) $cillustrations 225 1 $aTHEi Wiley ebooks 311 0 $a9781119426769 (Hardback) 311 0 $a1119426766 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1 Recent Developments and Current Challenges in Textile Finishing -- 1 Recent Concepts of Antimicrobial Textile Finishes -- 1.1 Introduction -- 1.2 Antimicrobial Agents -- 1.2.1 Mechanisms of Antimicrobial Activity -- 1.2.2 Structures of Antimicrobial Agents -- 1.2.2.1 Leaching Antimicrobial Agents -- 1.2.2.2 Bound Antimicrobial Agents -- 1.3 Low Adhesion Agents -- 1.4 Dual-Action Antimicrobial Agents -- 1.5 Evaluation of Antimicrobial Activity of Functionalized Textiles -- 1.5.1 Standardized Methods for the Determination of Antibacterial Activity -- 1.5.2 Standardized Methods for the Determination of Antifungal Activity -- 1.6 Health and Environmental Issues -- 1.6.1 Health and Environmental Impacts of Antimicrobial Compounds -- 1.7 Future Trends -- 1.8 Summary -- Acknowledgement -- References -- 2 Flame Retardant Textile Finishes -- 2.1 Introduction -- 2.2 Current Commercial, Durable Flame Retardants: Advantages and Disadvantages -- 2.3 Current Challenges -- 2.3.1 Minimisation of Effluents -- 2.3.2 Replacing Formaldehyde Chemistry, Particularly with Respect to Cotton and Blended Fabrics -- 2.3.2.1 Oligomeric Phosphate-Phosphonate -- 2.3.2.2 Multifunctional Carboxylic Acids -- 2.3.2.3 Alkyl Phosphoramidate Adduct -- 2.3.2.4 Phosphonyl Cyanurates -- 2.3.2.5 Cellulose-Phosphoramidate Ester Interchange -- 2.3.2.6 Cellulose-Chloro Triazinyl Derivative Condensation -- 2.3.2.7 Phosphorus Acid Derivatives of Cellulose -- 2.3.2.8 Phosphorus-Nitrogen-Silicon Developments -- 2.3.2.9 Polymer Networks -- 2.3.2.10 Other Finishing Treatments -- 2.3.3 Replacing Bromine, Notably in Coating and Back-Coating Formulations -- 2.3.3.1 Reducing the BrFR Concentrations -- 2.3.3.2 Possible Bromine-Chlorine and Phosphorus-Bromine Synergies -- 2.3.3.3 Effectiveness of Phosphorus. 327 $a2.3.3.4 The Sensitisation of Decomposition or Flame Retarding Efficiency of Phosphorus-Based Systems -- 2.3.3.5 The Introduction of a Volatile and Possible Vapour-Phase Active, Phosphorus-Based Flame Retardant Component -- 2.4 Novel Surface Chemistries -- 2.4.1 Sol-Gel Surface Treatments -- 2.4.2 Layer-by-Layer Treatments -- 2.4.3 Polymer Coating and UV and Plasma Grafting Treatments -- 2.4.3.1 Plasma Treatments -- 2.4.3.2 UV and Other Grafting Treatments -- 2.5 Summary -- References -- Bibliography -- 3 Striving for Self-Cleaning Textiles - Critical Thoughts on Current Literature -- 3.1 Introduction -- 3.2 Fundamental Principles -- 3.2.1 Self-Cleaning - The Super-Hydrophobic Approach -- 3.2.2 Self-Cleaning - The Super-Hydrophilic Approach -- 3.2.3 Expected Merits of the Concepts -- 3.3 Attempts to Attain Super-Hydrophobic Behavior -- 3.3.1 Minimized Surface Free Energy -- 3.3.1.1 Novel Chemical Finishes of Non-Polar Character -- 3.3.1.2 Deposition of Non-Polar Thin Layers by Plasma and Dielectric Barrier Discharge (DBD) -- 3.3.1.3 Deposition of Non-Polar Thin Layers by Photo-Chemical Surface Modification -- 3.3.2 Enhancing Liquid Repellence by Adding Surface Roughness -- 3.3.2.1 Application of Micro- and Nano-Rough (Hybrid) Coatings -- 3.3.2.2 Incorporation of Micro- and Nanoparticles -- 3.3.2.3 Laser-Based Surface Roughening -- 3.4 Attempts to Attain Super-Hydrophilic Properties -- 3.4.1 Use of Photo-Catalytic TiO2 -- 3.4.2 Making Use of Micro-Roughness According to the Wenzel Model -- 3.5 Relevance for Dirt Take-Up, Cleanability, and Self-Cleaning -- 3.6 Summary -- References -- 4 Metallization of Polymers and Textiles -- 4.1 Introduction -- 4.2 Main Methods of Metallization -- 4.2.1 Methods Based on Physical Vapor Deposition -- 4.2.2 Chemical Vapor Deposition Methods -- 4.3 Electroless Metallization -- 4.4 Summary -- References. 327 $a5 Wettability Characterization in Textiles - Use and Abuse of Measuring Procedures -- 5.1 Introduction -- 5.2 Peculiarities of Textile Substrates -- 5.3 Wettability Measurements on Fabrics -- 5.3.1 Contact Angle Measurements -- 5.3.2 Drop Penetration Tests -- 5.3.3 Soaking or Rising Height Test -- 5.3.4 The Wilhelmy Method -- 5.4 Contact Angle Measurements on Fibers -- 5.4.1 Adapting the Wilhelmy Plate Method to Single Fibers -- 5.4.2 The Washburn Approach - Wilhelmy Wicking Method -- 5.5 Summary and Concluding Remarks -- Acknowledgements -- References -- Part 2 Surface Modification Techniques for Textiles -- 6 Surface Functionalization of Synthetic Textiles by Atmospheric Pressure Plasma -- 6.1 Introduction -- 6.2 Processing Parameters of Atmospheric Pressure Plasma (APP) Jet -- 6.3 Change in Single Fiber Wettability Due to APP Jet Treatment -- 6.4 Hydrophobic Recovery after APP Jet Treatment -- 6.5 Chemical and Topographical Changes on Fiber Surface Due to APP Jet Treatment -- 6.6 Fabric Damage Due to APP Jet Treatment -- 6.7 Improvement of Textile Serviceability Properties by APP Jet Treatment -- 6.7.1 Water Wicking Property -- 6.7.2 Detergency -- 6.7.3 Dyeability -- 6.8 Summary and Prospects -- Acknowledgements -- References -- 7 UV-Based Photo-Chemical Surface Modification of Textile Fabrics -- 7.1 Introduction -- 7.2 Fundamentals of the Process -- 7.2.1 Photo-Addition, Irradiation in Air -- 7.2.2 Layer Formation by Homo-Polymerization and Graft-co-Polymerization -- 7.2.3 Experimental Concept -- 7.3 Fiber Properties Defined by the Surface Chemistry of Deposited Layers -- 7.3.1 Wetting and Adhesion -- 7.3.2 Wetting and Protein Adhesion - Antifouling Surfaces -- 7.3.3 Highly Liquid Repellent Technical Textiles -- 7.3.4 Patterned Wettablitity -- 7.4 Fiber Modification by Bulk Properties of Deposited Layers -- 7.4.1 Mechanical and Thermal Stability. 327 $a7.4.2 Barrier Function -- 7.4.3 Charge Storage -- 7.4.4 Permanent Flame Retardant Finish -- 7.5 Summary and Outlook -- References -- Part 3 Innovative Functionalities of Textiles -- 8 Glimpses into Tunable Wettability of Textiles -- 8.1 Introduction -- 8.2 Paths to Tunable Wettability -- 8.2.1 Fibre and Textile Surface Functionalisation -- 8.2.2 Stimuli-Responsive Hydrogel Functionalising Systems -- 8.2.3 Modes of Functionalisation and Additional Parameters to be Considered -- 8.3 Practical Aspects and Applications -- 8.4 Prospects -- 8.5 Summary -- References -- 9 3D Textile Structures for Harvesting Water from Fog: Overview and Perspectives -- 9.1 Introduction -- 9.2 Biological Models -- 9.2.1 Namib Desert Grass -- 9.2.2 Black Beetle in the Namib Desert -- 9.2.3 Epiphytic bromeliads -- 9.2.4 Pinus canariensis -- 9.3 Textile Development and Engineering -- 9.3.1 Fog Harvesting Efficiency in the Laboratory -- 9.3.2 Model of Drop Formation on the Yarn System of 3D Textiles -- 9.3.3 Scale Up to an Industrial Process -- 9.4 Technical Realization -- 9.5 Summary and Prospects -- References -- 10 Textile-Fixed Catalysts and their Use in Heterogeneous Catalysis -- 10.1 Introduction -- 10.2 Immobilization of Catalysts on Textile Carrier Materials -- 10.2.1 Inorganic Catalysts -- 10.2.2 Organo-Metallic Catalysts -- 10.2.3 Enzymes -- 10.2.4 Organic Catalysts -- 10.3 Summary and Outlook -- Acknowledgements -- References -- 11 Medical Textiles as Substrates for Tissue Engineering -- 11.1 Introduction -- 11.1.1 Concept of TE -- 11.1.2 Background of Medical Textiles in TE -- 11.2 Fiber Formation Approaches -- 11.2.1 Wet Spinning -- 11.2.2 Melt Spinning -- 11.2.3 Microfluidic Spinning -- 11.2.4 Self-Assembly -- 11.3 Fiber-Based Architectures for the TE Scaffold -- 11.3.1 Woven Fabrics -- 11.3.2 Knitted Fabrics -- 11.3.3 Braided Fabrics -- 11.3.4 Non-Woven Fabrics. 327 $a11.3.5 Bioprinting -- 11.4 Applications of Medical Textiles in TE -- 11.4.1 Musculoskeletal Tissues -- 11.4.2 Muscular Tissues -- 11.4.3 Ocular Tissues -- 11.4.4 Nerve Tissue -- 11.4.5 Skin -- 11.5 Summary and Prospects -- Note -- References -- Part 4 Fiber-Reinforced Composites -- 12 Thermoset Resin Based Fiber Reinforced Biocomposites -- 12.1 Introduction -- 12.1.1 Reinforcements and Fillers -- 12.1.2 Resins -- 12.1.3 Composites -- 12.1.4 Nanocomposites -- 12.1.5 Interfaces -- 12.1.6 Petroleum Based and Biobased Resins and Fibers -- 12.2 Characteristics of Biocomposites -- 12.3 Composite Classification -- 12.3.1 Hybrid Composites -- 12.3.2 'Greener' Composites -- 12.3.3 'Green' Composites -- 12.4 Natural Fiber Processing -- 12.4.1 Fiber Extraction -- 12.4.2 Fiber Treatments -- 12.4.3 Fiber Forms (Nonwoven, Woven, Knitted) -- 12.5 Polymeric Resins -- 12.5.1 Green Resins -- 12.5.2 Thermoset Green Resins -- 12.5.2.1 Protein Based Resins -- 12.5.2.2 Starch Based Resins -- 12.5.2.3 Fats/Lipids/Oils Based Resins -- 12.6 Biobased Thermoset Composites -- 12.6.1 Plant Based Cellulose Fiber Biocomposites -- 12.6.2 Starch Based Biocomposites -- 12.6.3 Protein Based Biocomposites -- 12.6.4 Chitosan Based Biocomposites -- 12.6.5 Lipid Based Biocomposites -- 12.7 Bionanocomposites -- 12.7.1 Starch Based Nanocomposites -- 12.7.2 Cellulose Based Nanocomposites -- 12.7.3 Protein Based Nanocomposites -- 12.7.4 Chitosan Based Nanocomposites -- 12.8 Applications and Advantages of Biocomposites -- 12.9 Opportunity and Challenges -- 12.10 Summary -- References -- 13 Characterisation of Fibre/Matrix Adhesion in Biobased Fibre-Reinforced Thermoplastic Composites -- 13.1 Introduction -- 13.1.1 Terms and Definitions -- 13.1.1.1 Fibre -- 13.1.1.2 Fibre Bundle -- 13.1.1.3 Equivalent Diameter -- 13.1.1.4 Critical Length -- 13.1.1.5 Aspect Ratio and Critical Aspect Ratio. 327 $a13.1.1.6 Single Element versus Collective. 330 $aTextiles have been historically and traditionally used to make clothes, but even in ancient times there were technical textiles for making sails, tents, etc. Today, technical textiles are used in various industries for a host of purposes and applications. Recently, there have been exciting developments on various fronts in the textile field to impart novel and innovative functionalities to textiles, e.g., easy-to-clean or dirt-repellent, flame retardancy, anti-bacterial, and fog-harvesting properties, to name a few. Also, textiles for electronics based on graphene, CNTs and other nanomaterials, conductive textiles, textiles for sensor function,   textile-fixed catalysts,  textiles for batteries and energy storage, textiles as substrates for tissue engineering, and textiles for O/W separation have appeared in the literature. All this has been possible through adopting novel ways for finishing textiles, e.g., by appropriate surface modification techniques, and utilizing biomimetic concepts borrowed from nature. This unique book entitled "Textile Finishing: Recent Developments and Future Trends" is divided into four parts: Part 1: Recent Developments/Current Challenges in Textile Finishing; Part 2: Surface Modification Techniques for Textiles; Part 3: Innovative Functionalities of Textiles; Part 4: Fiber-Reinforced Composites. The topics covered include: Antimicrobial textile finishes; flame retardant textile finishing; "self-cleaning" or easy-to-clean textiles; metallization of textiles; atmospheric pressure plasma, and uv-based photochemical surface modification of textiles; tunable wettability of textiles; 3D textile structures for fog harvesting; textile-fixed catalysts; medical textiles as substrates for tissue engineering; and fiber-reinforced "green" or "greener" biocomposites and the relevance of fiber/matrix adhesion. 410 0$aTHEi Wiley ebooks. 606 $aTextile finishing$xTechnological innovations 615 0$aTextile finishing$xTechnological innovations. 676 $a677.02 702 $aMittal$b K. L.$f1945- 702 $aBahners$b Thomas 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910819610903321 996 $aTextile finishing$93960220 997 $aUNINA