LEADER 02878nam 2200625 450 001 996466858703316 005 20220908132829.0 010 $a3-540-39473-7 024 7 $a10.1007/BFb0066246 035 $a(CKB)1000000000437824 035 $a(SSID)ssj0000324697 035 $a(PQKBManifestationID)12080855 035 $a(PQKBTitleCode)TC0000324697 035 $a(PQKBWorkID)10313192 035 $a(PQKB)10473914 035 $a(DE-He213)978-3-540-39473-0 035 $a(MiAaPQ)EBC5590659 035 $a(Au-PeEL)EBL5590659 035 $a(OCoLC)1066188690 035 $a(MiAaPQ)EBC6842291 035 $a(Au-PeEL)EBL6842291 035 $a(PPN)155197738 035 $a(EXLCZ)991000000000437824 100 $a20220908d1983 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 00$aMathematical theories of optimization $eproceedings of the international conference held in S. Margherita Ligure (Genova), November 30-December 4, 1981 /$fedited by J. P. Cecconi, T. Zolezzi 205 $a1st ed. 1983. 210 1$aBerlin, Germany :$cSpringer,$d[1983] 210 4$dİ1983 215 $a1 online resource (V, 270 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v979 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-11999-X 327 $aA convergence for bivariate functions aimed at the convergence of saddle values -- Optimal feedback controls for semilinear parabolic equations -- On the production smoothing problem -- Existence of solutions and existence of optimal solutions -- Dual variational methods in non-convex optimization and differential equations -- ? ? Convergence and calculus of variations -- The approximate first-order and second-order directional derivatives for a convex function -- New applications of nonsmooth analysis to nonsmooth optimization -- Controle optimal de systemes a etats multiples -- A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the calculus of variations -- Remarks on pathwise nonlinear filtering -- Boundary solutions of differential inclusion -- On the compactness of minimizing sequences of variational problems -- A formula for the level sets of epi-limits and some applications. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v979 606 $aCalculus of variations 615 0$aCalculus of variations. 676 $a519.6 686 $a00Bxx$2msc 686 $a49-06$2msc 686 $a35-06$2msc 686 $a93-06$2msc 702 $aZolezzi$b T.$f1942- 702 $aCecconi$b Jaures P. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466858703316 996 $aMathematical theories of optimization$979975 997 $aUNISA LEADER 01760nam 2200469 450 001 9910716860503321 005 20211001151641.0 035 $a(CKB)5470000002525580 035 $a(OCoLC)1272912331 035 $a(EXLCZ)995470000002525580 100 $a20211001d2021 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAssessing potential groundwater-level declines from future withdrawals in the Hualapai Valley, Northwestern Arizona /$fby Jacob E. Knight, Bruce Gungle, and Jeffrey R. Kennedy 210 1$aReston, Virginia :$cU.S. Department of the Interior, U.S. Geological Survey,$d2021. 215 $a1 online resource (viii, 62 pages) $ccolor illustrations, color maps 225 1 $aScientific investigations report,$x2328-0328 ;$v2021-5077 300 $a"Prepared in cooperation with Mohave County and the City of Kingman." 320 $aIncludes bibliographical references (pages ). 606 $aGroundwater flow$zArizona 606 $aWater-supply$zArizona 606 $aWater-supply$xManagement 606 $aWater table$zArizona 615 0$aGroundwater flow 615 0$aWater-supply 615 0$aWater-supply$xManagement. 615 0$aWater table 700 $aKnight$b Jacob E.$01408715 702 $aGungle$b Bruce 702 $aKennedy$b Jeffrey R. 712 02$aGeological Survey (U.S.), 712 02$aMohave County (Ariz.) 712 02$aKingman (Ariz.) 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910716860503321 996 $aAssessing potential groundwater-level declines from future withdrawals in the Hualapai Valley, Northwestern Arizona$93493277 997 $aUNINA