LEADER 01853oam 2200541M 450 001 9910716422503321 005 20200213070542.6 035 $a(CKB)5470000002521923 035 $a(OCoLC)1065860663 035 $a(OCoLC)995470000002521923 035 $a(EXLCZ)995470000002521923 100 $a20071213d1927 ua 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aThomas Griffith. January 13, 1927. -- Committed to the Committee of the Whole House and ordered to be printed 210 1$a[Washington, D.C.] :$c[U.S. Government Printing Office],$d1927. 215 $a1 online resource (2 pages) 225 1 $aHouse report / 69th Congress, 2nd session. House ;$vno. 1757 225 1 $a[United States congressional serial set] ;$v[serial no. 8690] 300 $aBatch processed record: Metadata reviewed, not verified. Some fields updated by batch processes. 300 $aFDLP item number not assigned. 606 $aAlcohol trafficking 606 $aClaims 606 $aDistrict courts 606 $aJudgments 606 $aLawyers$xFees 606 $aCosts (Law) 606 $aLegislative amendments 608 $aLegislative materials.$2lcgft 615 0$aAlcohol trafficking. 615 0$aClaims. 615 0$aDistrict courts. 615 0$aJudgments. 615 0$aLawyers$xFees. 615 0$aCosts (Law) 615 0$aLegislative amendments. 701 $aBox$b John C$g(John Calvin),$f1871-1941$pDemocrat (TX)$01392478 801 0$bWYU 801 1$bWYU 801 2$bOCLCO 801 2$bOCLCQ 906 $aBOOK 912 $a9910716422503321 996 $aThomas Griffith. January 13, 1927. -- Committed to the Committee of the Whole House and ordered to be printed$93548242 997 $aUNINA LEADER 06208nam 22007332 450 001 9910811412303321 005 20151005020622.0 010 $a1-107-32712-1 010 $a1-107-33688-0 010 $a1-107-33356-3 010 $a1-107-33522-1 010 $a1-139-54093-9 035 $a(CKB)2670000000356624 035 $a(EBL)1139620 035 $a(SSID)ssj0000859926 035 $a(PQKBManifestationID)11503654 035 $a(PQKBTitleCode)TC0000859926 035 $a(PQKBWorkID)10895324 035 $a(PQKB)10584116 035 $a(UkCbUP)CR9781139540933 035 $a(MiAaPQ)EBC1139620 035 $a(Au-PeEL)EBL1139620 035 $a(CaPaEBR)ebr10752974 035 $a(CaONFJC)MIL515093 035 $a(OCoLC)857489673 035 $a(PPN)261294342 035 $a(EXLCZ)992670000000356624 100 $a20120627d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDynamic models for volatility and heavy tails $ewith applications to financial and economic time series /$fAndrew C. Harvey$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (xviii, 261 pages) $cdigital, PDF file(s) 225 1 $aEconometric Society monographs ;$v52 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-63002-9 311 $a1-107-03472-8 320 $aIncludes bibliographical references (p. 247-254) and indexes. 327 $aContents; Preface; Acronyms and Abbreviations; 1 Introduction; 1.1 Unobserved Components and Filters; 1.2 Independence, White Noise and Martingale Differences; 1.2.1 The Law of Iterated Expectations and Optimal Predictions; 1.2.2 Definitions and Properties; 1.3 Volatility; 1.3.1 Stochastic Volatility; 1.3.2 Generalized Autoregressive Conditional Heteroscedasticity; 1.3.3 Exponential GARCH; 1.3.4 Variance, Scale and Outliers; 1.3.5 Location/Scale Models; 1.4 Dynamic Conditional Score Models; 1.5 Distributions and Quantiles; 1.6 Plan of Book; 2 Statistical Distributions and Asymptotic Theory 327 $a2.1 Distributions2.1.1 Student's t Distribution; 2.1.2 General Error Distribution; 2.1.3 Beta Distribution; 2.1.4 Gamma Distribution; 2.2 Maximum Likelihood; 2.2.1 Student's t Distribution; 2.2.2 General Error Distribution; 2.2.3 Gamma Distribution; 2.2.4 Consistency and Asymptotic Normality*; 2.3 Maximum Likelihood Estimation; 2.3.1 An Information Matrix Lemma; 2.3.2 Information Matrix for the First-Order Model; 2.3.3 Information Matrix with the 0=x""010E Parameterization*; 2.3.4 Asymptotic Distribution; 2.3.5 Consistency and Asymptotic Normality*; 2.3.6 Nonstationarity 327 $a2.3.7 Several Parameters2.4 Higher Order Models; 2.5 Tests; 2.5.1 Serial Correlation; 2.5.2 Goodness of Fit of Distributions; 2.5.3 Residuals; 2.5.4 Model Fit; 2.6 Explanatory Variables; 3 Location; 3.1 Dynamic Student's t Location Model; 3.2 Basic Properties; 3.2.1 Generalization and Reduced Form; 3.2.2 Moments of the Observations; 3.2.3 Autocorrelation Function; 3.3 Maximum Likelihood Estimation; 3.3.1 Asymptotic Distribution of the Maximum Likelihood Estimator; 3.3.2 Monte Carlo Experiments; 3.3.3 Application to U.S. GDP; 3.4 Parameter Restrictions* 327 $a3.5 Higher Order Models and the State Space Form*3.5.1 Linear Gaussian Models and the Kalman Filter; 3.5.2 The DCS Model; 3.5.3 QARMA Models; 3.6 Trend and Seasonality; 3.6.1 Local Level Model; 3.6.2 Application to Weekly Hours of Employees in U.S. Manufacturing; 3.6.3 Local Linear Trend; 3.6.4 Stochastic Seasonal; 3.6.5 Application to Rail Travel; 3.6.6 QARIMA and Seasonal QARIMA Models*; 3.7 Smoothing; 3.7.1 Weights; 3.7.2 Smoothing Recursions for Linear State Space Models; 3.7.3 Smoothing Recursions for DCS Models; 3.7.4 Conditional Mode Estimation and the Score; 3.8 Forecasting 327 $a3.8.1 QARMA Models3.8.2 State Space Form*; 3.9 Components and Long Memory; 3.10 General Error Distribution; 3.11 Skew Distributions; 3.11.1 How to Skew a Distribution; 3.11.2 Dynamic Skew-t Location Model; 4 Scale; 4.1 Beta-tttt-EGARCH; 4.2 Properties of Stationary Beta-tttt-EGARCH Models; 4.2.1 Exponential GARCH; 4.2.2 Moments; 4.2.3 Autocorrelation Functions of Squares and Powersof Absolute Values; 4.2.4 Autocorrelations and Kurtosis; 4.3 Leverage Effects; 4.4 Gamma-GED-EGARCH; 4.5 Forecasting; 4.5.1 Beta-t-EGARCH; 4.5.2 Gamma-GED-EGARCH; 4.5.3 Integrated Exponential Models 327 $a4.5.4 Predictive Distribution 330 $aThe volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling. 410 0$aEconometric Society monographs ;$v52. 517 3 $aDynamic Models for Volatility & Heavy Tails 606 $aEconometrics 606 $aFinance$xMathematical models 606 $aTime-series analysis 615 0$aEconometrics. 615 0$aFinance$xMathematical models. 615 0$aTime-series analysis. 676 $a330.01/5195 700 $aHarvey$b A. C$g(Andrew C.),$0982067 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910811412303321 996 $aDynamic models for volatility and heavy tails$94037729 997 $aUNINA