LEADER 00748nam0-22002651i-450- 001 990001125030403321 035 $a000112503 035 $aFED01000112503 035 $a(Aleph)000112503FED01 035 $a000112503 100 $a20000920d1967----km-y0itay50------ba 101 0 $aeng 200 1 $aOptimization of stochastic systems$fby Aok i. 210 $aNew York$cAcademic Press$d1967 225 1 $aMathematics in science and engineering 300 $a32esimo Vol. s 700 1$aAoki,$bMasanao$f<1931- >$054078 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001125030403321 952 $aC-26-(32$b7264$fMA1 959 $aMA1 996 $aOptimization of stochastic systems$9197486 997 $aUNINA DB $aING01 LEADER 01349oam 2200433 450 001 9910715266503321 005 20210323124316.0 035 $a(CKB)5470000002509358 035 $a(OCoLC)1232172515 035 $a(OCoLC)995470000002509358 035 $a(EXLCZ)995470000002509358 100 $a20210121j199201 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe structure and energetics of Cr(CO)6 and Cr(CO)5 /$fLeslie A. Barnes, Bowen Liu, Roland Lindh 210 1$aMoffett Field, California :$cNASA Ames Research Center,$d[January 1992]. 215 $a1 online resource (32 pages) 225 1 $aNASA/CR ;$v192889 320 $aIncludes bibliographical references (page 16-19). 517 $aStructure and energetics of Cr 606 $aAtomic physics$2nasat 606 $aMolecular physics$2nasat 615 7$aAtomic physics. 615 7$aMolecular physics. 700 $aBarnes$b Leslie A.$01408943 702 $aLiu$b Bowen 702 $aLindh$b Roland 712 02$aAmes Research Center, 801 0$bGPO 801 1$bGPO 801 2$bOCLCO 801 2$bGPO 906 $aBOOK 912 $a9910715266503321 996 $aThe structure and energetics of Cr(CO)6 and Cr(CO)5$93494158 997 $aUNINA LEADER 05348nam 2200649 450 001 9910813395503321 005 20231110225716.0 010 $a1-118-40748-2 010 $a1-118-48029-5 035 $a(CKB)3710000000225198 035 $a(EBL)947560 035 $a(OCoLC)889674358 035 $a(SSID)ssj0001334409 035 $a(PQKBManifestationID)12570964 035 $a(PQKBTitleCode)TC0001334409 035 $a(PQKBWorkID)11407251 035 $a(PQKB)11767121 035 $a(MiAaPQ)EBC947560 035 $a(DLC) 2012034368 035 $a(Au-PeEL)EBL947560 035 $a(CaPaEBR)ebr10915819 035 $a(CaONFJC)MIL639067 035 $a(OCoLC)808108846 035 $a(MiAaPQ)EBC7103615 035 $a(Au-PeEL)EBL7103615 035 $a(EXLCZ)993710000000225198 100 $a20140901h20132013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCombinatorics $ean introduction /$fTheodore G. Faticoni 210 1$aHoboken, New Jersey :$cWiley,$d2013. 210 4$d2013 215 $a1 online resource (329 p.) 225 1 $aNew York Academy of Sciences 300 $aDescription based upon print version of record. 311 $a1-118-40436-X 311 $a1-322-07816-5 320 $aIncludes bibliographical references and index. 327 $aMachine generated contents note: Preface xiii 1 Logic 1 1.1 Formal Logic 1 1.2 Basic Logical Strategies 6 1.3 The Direct Argument 10 1.4 More Argument Forms 12 1.5 Proof By Contradiction 15 1.6 Exercises 23 2 Sets 25 2.1 Set Notation 25 2.2 Predicates 26 2.3 Subsets 28 2.4 Union and Intersection 30 2.5 Exercises 32 3 Venn Diagrams 35 3.1 Inclusion/Exclusion Principle 35 3.2 Two Circle Venn Diagrams 37 3.3 Three Square Venn Diagrams 42 3.4 Exercises 50 4 Multiplication Principle 55 4.1 What is the Principle? 55 4.2 Exercises 60 5 Permutations 63 5.1 Some Special Numbers 64 5.2 Permutations Problems 65 5.3 Exercises 68 6 Combinations 69 6.1 Some Special Numbers 69 6.2 Combination Problems 70 6.3 Exercises 74 7 Problems Combining Techniques 77 7.1 Significant Order 77 7.2 Order Not Significant 78 7.3 Exercises 83 8 Arrangement Problems 85 8.1 Examples of Arrangements 86 8.2 Exercises 91 9 At Least, At Most, and Or 93 9.1 Counting With Or 93 9.2 At Least, At Most 98 9.3 Exercises 102 10 Complement Counting 103 10.1 The Complement Formula 103 10.2 A New View of ?At Least? 105 10.3 Exercises 109 11 Advanced Permutations 111 11.1 Venn Diagrams and Permutations 111 11.2 Exercises 120 12 Advanced Combinations 125 12.1 Venn Diagrams and Combinations 125 12.2 Exercises 131 13 Poker and Counting 133 13.1 Warm Up Problems 133 13.2 Poker Hands 135 13.3 Jacks or Better 141 13.4 Exercises 143 14 Advanced Counting 145 14.1 Indistinguishable Objects 145 14.2 Circular Permutations 148 14.3 Bracelets 151 14.4 Exercises 155 15 Algebra and Counting 157 15.1 The Binomial Theorem 157 15.2 Identities 160 15.3 Exercises 165 16 Derangements 167 16.1 Fixed Point Theorems 168 16.2 His Own Coat 173 16.3 Exercises 174 17 Probability Vocabulary 175 17.1 Vocabulary 175 18 Equally Likely Outcomes 181 18.1 Exercises 188 19 Probability Trees 189 19.1 Tree Diagrams 189 19.2 Exercises 198 20 Independent Events 199 20.1 Independence 199 20.2 Logical Consequences of Influence 202 20.3 Exercises 206 21 Sequences and Probability 209 21.1 Sequences of Events 209 21.2 Exercises 215 22 Conditional Probability 217 22.1 What Does Conditional Mean? 217 22.2 Exercises 223 23 Bayes? Theorem 225 23.1 The Theorem 225 23.2 Exercises 230 24 Statistics 231 24.1 Introduction 231 24.2 Probability is not Statistics 231 24.3 Conversational Probability 232 24.4 Conditional Statistics 239 24.5 The Mean 241 24.6 Median 242 24.7 Randomness 244 25 Linear Programming 249 25.1 Continuous Variables 249 25.2 Discrete Variables 254 25.3 Incorrectly Applied Rules 258 26 Subjective Truth 261 Bibliography 267 Index 269 . 330 $a"This book provides a treatment of counting combinatorics that uniquely includes detailed formulas, proofs, and exercises and features coverage of derangements, elementary probability, conditional probability, independent probability, and Bayes' Theorem. Using elementary applications that never advance beyond the use of Venn diagrams, the inclusion/exclusion formula, the multiplication principal, permutations, and combinations, Combinatorics is perfect for courses on discrete or finite mathematics--or as a reference for anyone who wants to learn about the various applications of elementary combinatorics"--$cProvided by publisher. 330 $a"This book provides a treatment of counting combinatorics and contains topical discussions beyond what is typically seen in other related books. Formulas are discussed and justified, and examples include unique approaches and ideas to the discussed topics"--$cProvided by publisher. 410 0$aNew York Academy of Sciences 606 $aCombinatorial analysis 615 0$aCombinatorial analysis. 676 $a511/.6 686 $aMAT036000$2bisacsh 700 $aFaticoni$b Theodore G$g(Theodore Gerard),$f1954-$0502645 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910813395503321 996 $aCombinatorics$93966752 997 $aUNINA