LEADER 01443nam 2200361 450 001 9910713951403321 005 20201209064404.0 035 $a(CKB)5470000002506149 035 $a(OCoLC)1200231665 035 $a(EXLCZ)995470000002506149 100 $a20201014d2020 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn analysis of post-attack impacts and effects of learning parameters on vulnerability assessment of power grid /$fShuva Paul, Zhen Ni, and Fei Ding 210 1$aGolden, CO :$cNational Renewable Energy Laboratory,$d2020. 215 $a1 online resource (1 page) $ccolor illustrations 225 1 $aNREL/PO ;$v5D00-76118 300 $aPresented at the Innovative Smart Grid Technologies (ISGT 2020) North America, 17-20 February 2020, Washington, D.C. 606 $aElectric power systems$xProtection 606 $aElectric power systems$xComputer simulation 615 0$aElectric power systems$xProtection. 615 0$aElectric power systems$xComputer simulation. 700 $aPaul$b Shuva$01410153 712 02$aNational Renewable Energy Laboratory (U.S.), 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910713951403321 996 $aAn analysis of post-attack impacts and effects of learning parameters on vulnerability assessment of power grid$93498332 997 $aUNINA