LEADER 01490nam 2200397 450 001 9910713758203321 005 20200730153553.0 035 $a(CKB)5470000002504101 035 $a(OCoLC)1179160559 035 $a(EXLCZ)995470000002504101 100 $a20200730d2019 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuasi-stochastic approximation and off-policy reinforcement learning $epreprint /$fAndrey Bernstein [and five others] 210 1$aGolden, CO :$cNational Renewable Energy Laboratory,$d2019. 215 $a1 online resource (8 pages) $ccolor illustrations 225 1 $aNREL/CP ;$v5D00-73518 300 $a"Presented at the 2019 IEEE Conference on Decision and Control (IEEE CDC), Nice, France, December 11-13, 2019." 300 $a"December 2019." 320 $aIncludes bibliographical references (page 8). 517 $aQuasi-stochastic approximation and off-policy reinforcement learning 606 $aReinforcement learning 606 $aStochastic approximation 615 0$aReinforcement learning. 615 0$aStochastic approximation. 700 $aBernstein$b Andrey$01401176 712 02$aNational Renewable Energy Laboratory (U.S.), 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910713758203321 996 $aQuasi-stochastic approximation and off-policy reinforcement learning$93469533 997 $aUNINA