LEADER 01454aam 2200421I 450 001 9910711202903321 005 20151113033706.0 024 8 $aGOVPUB-C13-ab177b7f5494173fefe42d2bae9ddc5b 035 $a(CKB)5470000002481997 035 $a(OCoLC)929067951 035 $a(EXLCZ)995470000002481997 100 $a20151113d1998 ua 0 101 0 $aeng 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aStripline resonator for electromagnetic measurements of materials /$fChriss A. Jones 210 1$aGaithersburg, MD :$cU.S. Dept. of Commerce, National Institute of Standards and Technology,$d1998. 215 $a1 online resource 225 1 $aNIST technical note ;$v1505 300 $a1998. 300 $aContributed record: Metadata reviewed, not verified. Some fields updated by batch processes. 300 $aTitle from PDF title page. 320 $aIncludes bibliographical references. 606 $aCavity resonators 606 $aStrip transmission lines 615 0$aCavity resonators. 615 0$aStrip transmission lines. 700 $aJones$b Chriss A$01398310 701 $aJones$b Chriss A$01398310 712 02$aUnited States.$bNational Bureau of Standards. 801 0$bNBS 801 1$bNBS 801 2$bGPO 906 $aBOOK 912 $a9910711202903321 996 $aStripline resonator for electromagnetic measurements of materials$93461343 997 $aUNINA LEADER 04782nam 2200613Ia 450 001 9910634037803321 005 20200520144314.0 010 $a1-281-22283-6 010 $a9786611222833 010 $a3-540-73528-3 024 7 $a10.1007/978-3-540-73528-1 035 $a(CKB)1000000000399822 035 $a(EBL)338589 035 $a(OCoLC)233973316 035 $a(SSID)ssj0000218257 035 $a(PQKBManifestationID)11198579 035 $a(PQKBTitleCode)TC0000218257 035 $a(PQKBWorkID)10233002 035 $a(PQKB)10343631 035 $a(DE-He213)978-3-540-73528-1 035 $a(MiAaPQ)EBC338589 035 $a(PPN)123742331 035 $a(EXLCZ)991000000000399822 100 $a20070822d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aParticle image velocimetry $enew developments and recent applications /$fAndreas Schroeder, Christian E. Willert (eds.) 205 $a1st ed. 2008. 210 $aBerlin $cSpringer$dc2008 215 $a1 online resource (530 p.) 225 1 $aTopics in applied physics ;$vv. 112 300 $aDescription based upon print version of record. 311 $a3-540-73527-5 320 $aIncludes bibliographical references and index. 327 $aAssessment of Different SPIV Processing Methods for an Application to Near-Wall Turbulence -- Joint Numerical and Experimental Investigation of the Flow Around a Circular Cylinder at High Reynolds Number -- Natural Gas Burners for Domestic and Industrial Appliances. -- PIV Application to Fluid Dynamics of Bass Reflex Ports -- Overview on PIV Application to Appliances -- Selected Applications of Planar Imaging Velocimetry in Combustion Test Facilities -- Recent Applications of Particle Image Velocimetry to Flow Research in Thermal Turbomachinery -- Two-Phase PIV: Fuel-Spray Interaction with Surrounding Air -- High-Speed PIV: Applications in Engines and Future Prospects -- PIV in the Car Industry: State-of-the-Art and Future Perspectives -- Measurements and Simulations of the Flow Field in an Electrically Excited Meander Micromixer -- Evaluation of Large-Scale Wing Vortex Wakes from Multi-Camera PIV Measurements in Free-Flight Laboratory -- Aerodynamic Performance Degradation Induced by Ice Accretion. PIV Technique Assessment in Icing Wind Tunnel -- Analysis of the Vortex Street Generated at the Core-Bypass Lip of a Jet-Engine Nozzle -- PIV Measurements in Shock Tunnels and Shock Tubes -- Overview of PIV in Supersonic Flows -- PIV Investigation of Supersonic Base-Flow?Plume Interaction -- Developments and Applications of PIV in Naval Hydrodynamics -- Characterization of Microfluidic Devices by Measurements with ?-PIV and CLSM -- Time-Resolved PIV Measurements of Vortical Structures in the Upper Human Airways -- PIV Measurements of Flows in Artificial Heart Valves -- Particle Image Velocimetry in Lung Bifurcation Models -- Tomographic 3D-PIV and Applications -- Recent Developments of PIV towards 3D Measurements -- Digital In-Line Holography System for 3D-3C Particle Tracking Velocimetry -- Holographic PIV System Using a Bacteriorhodopsin (BR) Film. 330 $aParticle Image Velocimetry (PIV) is a non-intrusive optical measurement technique which allows capturing several thousand velocity vectors within large flow fields instantaneously. Today, the PIV technique has spread widely and differentiated into many distinct applications, from micro flows over combustion to supersonic flows for both industrial needs and research. Over the past decade the measurement technique and the hard- and software have been improved continuously so that PIV has become a reliable and accurate method for "real life" investigations. Nevertheless there is still an ongoing process of improvements and extensions of the PIV technique towards 3D, time resolution, higher accuracy, measurements under harsh conditions and micro- and macroscales. This book gives a synopsis of the main results achieved during the EC-funded network PivNet 2 as well as a survey of the state-of-the-art of scientific research using PIV techniques in different fields of application. 410 0$aTopics in applied physics ;$vv. 112. 606 $aParticle image velocimetry 606 $aFlow visualization 615 0$aParticle image velocimetry. 615 0$aFlow visualization. 676 $a620.1064 701 $aSchroeder$b Andreas$cDr.$0801132 701 $aWillert$b Christian E.$f1964-$0726149 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910634037803321 996 $aParticle image velocimetry$94197830 997 $aUNINA