LEADER 01419aam 2200409I 450 001 9910710294503321 005 20151118015331.0 024 8 $aGOVPUB-C13-78f83c27b72a6ea3e166b7aaeb30ed73 035 $a(CKB)5470000002476337 035 $a(OCoLC)929883771 035 $a(EXLCZ)995470000002476337 100 $a20151118d1979 ua 0 101 0 $aeng 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aInterlaboratory programs for rubber $eAnalyses no. 37 July-September 1978 /$fJ. Horlick; T. L. Cummings; G. W. Bullman 210 1$aGaithersburg, MD :$cU.S. Dept. of Commerce, National Institute of Standards and Technology,$d1979. 215 $a1 online resource 225 1 $aNBSIR ;$v79-1365 300 $a1979. 300 $aContributed record: Metadata reviewed, not verified. Some fields updated by batch processes. 300 $aTitle from PDF title page. 320 $aIncludes bibliographical references. 517 $aInterlaboratory programs for rubber 700 $aHorlick$b J$01386491 701 $aBullman$b G. W$01386492 701 $aCummings$b T. L$01386493 701 $aHorlick$b J$01386491 712 02$aUnited States.$bNational Bureau of Standards. 801 0$bNBS 801 1$bNBS 801 2$bGPO 906 $aBOOK 912 $a9910710294503321 996 $aInterlaboratory programs for rubber$93435446 997 $aUNINA LEADER 04169nam 2200589 450 001 9910828759003321 005 20170816143326.0 010 $a1-4704-0836-8 035 $a(CKB)3360000000464597 035 $a(EBL)3113950 035 $a(SSID)ssj0000889290 035 $a(PQKBManifestationID)11932404 035 $a(PQKBTitleCode)TC0000889290 035 $a(PQKBWorkID)10875864 035 $a(PQKB)10874424 035 $a(MiAaPQ)EBC3113950 035 $a(RPAM)2925805 035 $a(PPN)195412966 035 $a(EXLCZ)993360000000464597 100 $a20140909h19891989 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUnimodal, log-concave and Po?lya frequency sequences in combinatorics /$fFrancesco Brenti 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d1989. 210 4$dİ1989 215 $a1 online resource (118 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9266 ;$vNumber 413 300 $a"September 1989, Volume 81, Number 413 (fourth of 6 numbers)." 311 $a0-8218-2476-7 320 $aIncludes bibliographical references. 327 $a""Contents""; ""Foreword""; ""Introduction""; ""Chapter 1 The Poset Conjecture""; ""1.1 Introduction""; ""1.2 Statement of the Poset Conjecture""; ""1.3 Partial results on the Poset Conjecture""; ""1.4 A second look at the Poset Conjecture""; ""Chapter 2 A General Theory""; ""2.1 Introduction""; ""2.2 Polynomials with only real zeros and total positivity""; ""2.3 The six fundamental bases and the transition matrices between them""; ""2.4 Linear transformations that preserve the PF property""; ""2.5 Linear transformations that preserve the PF[sub(2)] property"" 327 $a""2.6 Summary of results and open problems""""Chapter 3 Ramifications of the General Theory""; ""3.1 Introduction""; ""3.2 Further properties of the six fundamental bases""; ""3.3 The special case of polynomials with no constant term""; ""3.4 Eulerian, Lagrange, and Krawtchouk polynomials""; ""3.5 Three general problems""; ""Chapter 4 Polynomials in PF[([sup(x+d-i)][sub(d)])]""; ""4.1 Introduction""; ""4.2 Elementary properties of PF[([sup(x+d-i)][sub(d)])]""; ""4.3 A Fundamental Theorem""; ""4.4 Consequences of the Fundamental Theorem""; ""4.5 The characterization of PF-sequences"" 327 $a""4.6 The characterization of PF[([sup(x+d-i)][sub(d)])]""""4.7 Products of polynomials in PF[([sup(x+d-i)][sub(d)])]""; ""Chapter 5 Applications to the Poset Conjecture""; ""5.1 Introduction""; ""5.2 Ferrers posets""; ""5.3 Column strict labeled Ferrers posets and the solution of a conjecture""; ""5.4 A class of naturally labeled Ferrers posets""; ""5.5 Disjoint unions of chains""; ""5.6 Gaussian posets""; ""5.7 Necessary and sufficient conditions for the Poset Conjecture""; ""Chapter 6 Applications to Enumerative Combinatorics""; ""6.1 Introduction"" 327 $a""6.2 PF sequences arising from symmetric functions and Jack polynomials""""6.3 Zeta polynomials of partially ordered sets""; ""6.4 Functions of a finite set into itself""; ""6.5 Associated Lah numbers""; ""6.6 Stirling permutations""; ""6.7 Associated Stirling numbers""; ""6.8 Colorings of graphs""; ""Chapter 7 Polya Frequency Digraphs""; ""7.1 Introduction""; ""7.2 PF digraphs and the distributive lattice conjecture""; ""7.3 A general result""; ""7.4 The connection with the theory of symmetric functions""; ""7.5 The inversion Theorem""; ""7.6 PF[sub(2)] digraphs"" 327 $a""7.7 Semitransitive digraphs""""Bibliography""; ""Appendix""; ""Tables"" 410 0$aMemoirs of the American Mathematical Society ;$vNumber 413. 606 $aCombinatorial analysis 606 $aSequences (Mathematics) 615 0$aCombinatorial analysis. 615 0$aSequences (Mathematics) 676 $a511/.6 700 $aBrenti$b Francesco$f1960-$0498033 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828759003321 996 $aUnimodal, log-concave and Po?lya frequency sequences in combinatorics$94019147 997 $aUNINA