LEADER 02350oam 2200649 450 001 9910709613203321 005 20180612150754.0 035 $a(CKB)5470000002472108 035 $a(OCoLC)896811421 035 $a(EXLCZ)995470000002472108 100 $a20141123d1995 ua 0 101 0 $aeng 135 $aurn|||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLate Proterozoic diabase dikes of the New Jersey Highlands $ea remnant of Iapetan rifting in the north-central Appalachians /$fby Richard A. Volkert and John H. Puffer 210 1$aWashington :$cUnited States Government Printing Office,$d1995. 215 $a1 online resource (iv pages, 22 unnumbered pages) $cillustrations, map 225 1 $aGeologic studies in New Jersey and eastern Pennsylvania ;$vA 225 1 $aU.S. Geological Survey professional paper ;$v1565 300 $a"Prepared in cooperation with the New Jersey Geological Survey." 320 $aIncludes bibliographical references (pages 20-21). 517 $aLate Proterozoic diabase dikes of the New Jersey Highlands 606 $aDikes (Geology)$zNew Jersey$zNew Jersey Highlands 606 $aDiabase$zNew Jersey$zNew Jersey Highlands 606 $aGeology, Stratigraphic$yProterozoic 606 $aGeology$zNew Jersey$zNew Jersey Highlands 606 $aDiabase$2fast 606 $aDikes (Geology)$2fast 606 $aGeology$2fast 606 $aGeology, Stratigraphic$2fast 606 $aProterozoic Geologic Period$2fast 607 $aNew Jersey Highlands (N.J.) 607 $aNew Jersey$zNew Jersey Highlands$2fast 615 0$aDikes (Geology) 615 0$aDiabase 615 0$aGeology, Stratigraphic 615 0$aGeology 615 7$aDiabase. 615 7$aDikes (Geology) 615 7$aGeology. 615 7$aGeology, Stratigraphic. 615 7$aProterozoic Geologic Period. 700 $aVolkert$b Richard A.$01404719 702 $aPuffer$b John H. 712 02$aNew Jersey Geological Survey. 712 02$aGeological Survey (U.S.), 801 0$bCOP 801 1$bCOP 801 2$bOCLCO 801 2$bOCLCF 801 2$bGPO 906 $aBOOK 912 $a9910709613203321 996 $aLate Proterozoic diabase dikes of the New Jersey Highlands$93537097 997 $aUNINA LEADER 09016nam 2200529 450 001 996479369703316 005 20231110225045.0 010 $a3-030-86155-4 035 $a(MiAaPQ)EBC6994990 035 $a(Au-PeEL)EBL6994990 035 $a(CKB)22444488300041 035 $a(PPN)269153039 035 $a(EXLCZ)9922444488300041 100 $a20221206d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplication-inspired linear algebra /$fHeather A. Moon, Thomas J. Asaki, Marie A. Snipes 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (538 pages) 225 1 $aSpringer Undergraduate Texts in Mathematics and Technology 300 $aIncludes index. 311 08$aPrint version: Moon, Heather A. Application-Inspired Linear Algebra Cham : Springer International Publishing AG,c2022 9783030861544 327 $aIntro -- Preface -- Outline of Text -- Using This Text -- Exercises -- Computational Tools -- Ancillary Materials -- Acknowledgements -- Contents -- About the Authors -- Introduction To Applications -- 1.1 A Sample of Linear Algebra in Our World -- 1.1.1 Modeling Dynamical Processes -- 1.1.2 Signals and Data Analysis -- 1.1.3 Optimal Design and Decision-Making -- 1.2 Applications We Use to Build Linear Algebra Tools -- 1.2.1 CAT Scans -- 1.2.2 Diffusion Welding -- 1.2.3 Image Warping -- 1.3 Advice to Students -- 1.4 The Language of Linear Algebra -- 1.5 Rules of the Game -- 1.6 Software Tools -- 1.7 Exercises -- Vector Spaces -- 2.1 Exploration: Digital Images -- 2.1.1 Exercises -- 2.2 Systems of Equations -- 2.2.1 Systems of Equations -- 2.2.2 Techniques for Solving Systems of Linear Equations -- 2.2.3 Elementary Matrix -- 2.2.4 The Geometry of Systems of Equations -- 2.2.5 Exercises -- 2.3 Vector Spaces -- 2.3.1 Images and Image Arithmetic -- 2.3.2 Vectors and Vector Spaces -- 2.3.3 The Geometry of the Vector Space mathbbR3 -- 2.3.4 Properties of Vector Spaces -- 2.3.5 Exercises -- 2.4 Vector Space Examples -- 2.4.1 Diffusion Welding and Heat States -- 2.4.2 Function Spaces -- 2.4.3 Matrix Spaces -- 2.4.4 Solution Spaces -- 2.4.5 Other Vector Spaces -- 2.4.6 Is My Set a Vector Space? -- 2.4.7 Exercises -- 2.5 Subspaces -- 2.5.1 Subsets and Subspaces -- 2.5.2 Examples of Subspaces -- 2.5.3 Subspaces of mathbbRn -- 2.5.4 Building New Subspaces -- 2.5.5 Exercises -- Vector Space Arithmetic and Representations -- 3.1 Linear Combinations -- 3.1.1 Linear Combinations -- 3.1.2 Matrix Products -- 3.1.3 The Matrix Equation Ax=b -- 3.1.4 The Matrix Equation Ax=0 -- 3.1.5 The Principle of Superposition -- 3.1.6 Exercises -- 3.2 Span -- 3.2.1 The Span of a Set of Vectors -- 3.2.2 To Span a Set of Vectors -- 3.2.3 Span X is a Vector Space. 327 $a3.2.4 Exercises -- 3.3 Linear Dependence and Independence -- 3.3.1 Linear Dependence and Independence -- 3.3.2 Determining Linear (In)dependence -- 3.3.3 Summary of Linear Dependence -- 3.3.4 Exercises -- 3.4 Basis and Dimension -- 3.4.1 Efficient Heat State Descriptions -- 3.4.2 Basis -- 3.4.3 Constructing a Basis -- 3.4.4 Dimension -- 3.4.5 Properties of Bases -- 3.4.6 Exercises -- 3.5 Coordinate Spaces -- 3.5.1 Cataloging Heat States -- 3.5.2 Coordinates in mathbbRn -- 3.5.3 Example Coordinates of Abstract Vectors -- 3.5.4 Brain Scan Images and Coordinates -- 3.5.5 Exercises -- Linear Transformations -- 4.1 Explorations: Computing Radiographs and the Radiographic Transformation -- 4.1.1 Radiography on Slices -- 4.1.2 Radiographic Scenarios and Notation -- 4.1.3 A First Example -- 4.1.4 Radiographic Setup Example -- 4.1.5 Exercises -- 4.2 Transformations -- 4.2.1 Transformations are Functions -- 4.2.2 Linear Transformations -- 4.2.3 Properties of Linear Transformations -- 4.2.4 Exercises -- 4.3 Explorations: Heat Diffusion -- 4.3.1 Heat States as Vectors -- 4.3.2 Heat Evolution Equation -- 4.3.3 Exercises -- 4.3.4 Extending the Exploration: Application to Image Warping -- 4.4 Matrix Representations of Linear Transformations -- 4.4.1 Matrix Transformations between Euclidean Spaces -- 4.4.2 Matrix Transformations -- 4.4.3 Change of Basis Matrix -- 4.4.4 Exercises -- 4.5 The Determinants of a Matrix -- 4.5.1 Determinant Calculations and Algebraic Properties -- 4.6 Explorations: Re-Evaluating Our Tomographic Goal -- 4.6.1 Seeking Tomographic Transformations -- 4.6.2 Exercises -- 4.7 Properties of Linear Transformations -- 4.7.1 One-To-One Transformations -- 4.7.2 Properties of One-To-One Linear Transformations -- 4.7.3 Onto Linear Transformations -- 4.7.4 Properties of Onto Linear Transformations -- 4.7.5 Summary of Properties. 327 $a4.7.6 Bijections and Isomorphisms -- 4.7.7 Properties of Isomorphic Vector Spaces -- 4.7.8 Building and Recognizing Isomorphisms -- 4.7.9 Inverse Transformations -- 4.7.10 Left Inverse Transformations -- 4.7.11 Exercises -- Invertibility -- 5.1 Transformation Spaces -- 5.1.1 The Nullspace -- 5.1.2 Domain and Range Spaces -- 5.1.3 One-to-One and Onto Revisited -- 5.1.4 The Rank-Nullity Theorem -- 5.1.5 Exercises -- 5.2 Matrix Spaces and the Invertible Matrix Theorem -- 5.2.1 Matrix Spaces -- 5.2.2 The Invertible Matrix Theorem -- 5.2.3 Exercises -- 5.3 Exploration: Reconstruction Without an Inverse -- 5.3.1 Transpose of a Matrix -- 5.3.2 Invertible Transformation -- 5.3.3 Application to a Small Example -- 5.3.4 Application to Brain Reconstruction -- Diagonalization -- 6.1 Exploration: Heat State Evolution -- 6.2 Eigenspaces and Diagonalizable Transformations -- 6.2.1 Eigenvectors and Eigenvalues -- 6.2.2 Computing Eigenvalues and Finding Eigenvectors -- 6.2.3 Using Determinants to Find Eigenvalues -- 6.2.4 Eigenbases -- 6.2.5 Diagonalizable Transformations -- 6.2.6 Exercises -- 6.3 Explorations: Long-Term Behavior and Diffusion Welding Process Termination Criterion -- 6.3.1 Long-Term Behavior in Dynamical Systems -- 6.3.2 Using MATLAB/OCTAVE to Calculate Eigenvalues and Eigenvectors -- 6.3.3 Termination Criterion -- 6.3.4 Reconstruct Heat State at Removal -- 6.4 Markov Processes and Long-Term Behavior -- 6.4.1 Matrix Convergence -- 6.4.2 Long-Term Behavior -- 6.4.3 Markov Processes -- 6.4.4 Exercises -- Inner Product Spaces and Pseudo-Invertibility -- 7.1 Inner Products, Norms, and Coordinates -- 7.1.1 Inner Product -- 7.1.2 Vector Norm -- 7.1.3 Properties of Inner Product Spaces -- 7.1.4 Orthogonality -- 7.1.5 Inner Product and Coordinates -- 7.1.6 Exercises -- 7.2 Projections -- 7.2.1 Coordinate Projection -- 7.2.2 Orthogonal Projection. 327 $a7.2.3 Gram-Schmidt Process -- 7.2.4 Exercises -- 7.3 Orthogonal Transformations -- 7.3.1 Orthogonal Matrices -- 7.3.2 Orthogonal Diagonalization -- 7.3.3 Completing the Invertible Matrix Theorem -- 7.3.4 Symmetric Diffusion Transformation -- 7.3.5 Exercises -- 7.4 Exploration: Pseudo-Inverting the Non-invertible -- 7.4.1 Maximal Isomorphism Theorem -- 7.4.2 Exploring the Nature of the Data Compression Transformation -- 7.4.3 Additional Exercises -- 7.5 Singular Value Decomposition -- 7.5.1 The Singular Value Decomposition -- 7.5.2 Computing the Pseudo-Inverse -- 7.5.3 Exercises -- 7.6 Explorations: Pseudo-Inverse Tomographic Reconstruction -- 7.6.1 The First Pseudo-Inverse Brain Reconstructions -- 7.6.2 Understanding the Effects of Noise. -- 7.6.3 A Better Pseudo-Inverse Reconstruction -- 7.6.4 Using Object-Prior Information -- 7.6.5 Additional Exercises -- Conclusions -- 8.1 Radiography and Tomography Example -- 8.2 Diffusion -- 8.3 Your Next Mathematical Steps -- 8.3.1 Modeling Dynamical Processes -- 8.3.2 Signals and Data Analysis -- 8.3.3 Optimal Design and Decision Making -- 8.4 How to move forward -- 8.5 Final Words -- A Transmission Radiography and Tomography: A Simplified Overview -- A.1 What is Radiography? -- A.2 The Incident X-ray Beam -- A.3 X-Ray Beam Attenuation -- A.4 Radiographic Energy Detection -- A.5 The Radiographic Transformation Operator -- A.6 Multiple Views and Axial Tomography -- A.7 Model Summary -- A.8 Model Assumptions -- A.9 Additional Resources -- B The Diffusion Equation -- C Proof Techniques -- C.1 Logic -- C.2 Proof structure -- C.3 Direct Proof -- C.4 Contrapositive -- C.5 Proof by Contradiction -- C.6 Disproofs and Counterexamples -- C.7 The Principle of Mathematical Induction -- C.8 Etiquette -- D Fields -- D.1 Exercises. 410 0$aSpringer Undergraduate Texts in Mathematics and Technology 606 $aAlgebras, Linear 606 $aÀlgebra lineal$2thub 608 $aLlibres electrònics$2thub 615 0$aAlgebras, Linear. 615 7$aÀlgebra lineal 676 $a512.5 700 $aMoon$b Heather A.$01237760 702 $aAsaki$b Thomas J.$f1963- 702 $aSnipes$b Marie A. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996479369703316 996 $aApplication-inspired linear algebra$92988004 997 $aUNISA LEADER 05083nam 2200541 450 001 9910828159503321 005 20200520144314.0 010 $a0-08-100006-5 035 $a(CKB)3710000000468287 035 $a(EBL)2197269 035 $a(Au-PeEL)EBL2197269 035 $a(CaPaEBR)ebr11306150 035 $a(CaONFJC)MIL826424 035 $a(OCoLC)929143587 035 $a(MiAaPQ)EBC2197269 035 $a(EXLCZ)993710000000468287 100 $a20161202h20162016 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aInorganic controlled release technology $ematerials and concepts for advanced drug formulation /$fXiang Zhang, Mark Cresswell 210 1$aOxford, [England] ;$aWaltham, Massachusetts :$cButterworth-Heinemann,$d2016. 210 4$d©2016 215 $a1 online resource (264 p.) 300 $aDescription based upon print version of record. 311 $a0-08-099991-3 320 $aIncludes bibliographical references and index. 327 $aFront Cover; Inorganic Controlled Release Technology: Materials and Concepts for Advanced Drug Formulation; Copyright; Contents; About the Author; Preface; Acknowledgments; Key Features; Chapter 1: Materials for Inorganic Controlled Release Technology; 1.1. Introduction; 1.2. Comparison between Organic and Inorganic CRT; 1.3. Materials Chemistry and Processing Technology; 1.3.1. Fusion-Based Approach to Making Water-Soluble Glasses; 1.3.2. Sol-Gel Approach; 1.3.3. Surfactant Template Approach for Mesoporous Silica; 1.4. Materials Physics and Drug-Loaded Micro/Nanostructure; References 327 $aChapter 2: Materials Fundamentals of Drug Controlled Release2.1. Introduction of Materials Nanostructure; 2.1.1. The Structure of Amorphous Materials; 2.1.2. Theories of Amorphous Materials; 2.1.2.1. Glass Transition; 2.1.2.2. Free Volume Theory; 2.2. API Distribution Within Inorganic Matrices; 2.2.1. Traditional API Distribution; 2.2.2. API Distribution Within inorganic CRT Matrices; 2.3. Basic Understanding of Potential Molecular Interactions; 2.3.1. Classical API Excipients; 2.3.2. Interactions Between API and inorganic CRT Matrix Systems; 2.3.3. The Surface Chemistry of Silica 327 $a2.3.4. Molecular Interaction with Directionally Templated Mesoporous Silica Systems2.3.5. Towards Molecular Dispersion and Distribution; 2.3.6. Molecular Interaction Sites on Sol-Gel Silica and Phosphate Glass; 2.3.7. Dissolution of Phosphate Glass; 2.3.8. Glass Formulation for inorganic CRT; 2.4. Theory and Practical Modelling of Drug Controlled Release Kinetics; References; Further Reading; Chapter 3: Materials Characterization of Inorganic Controlled Release; 3.1. Introduction; 3.2. Chemical Analysis; 3.2.1. X-Ray Fluorescence; 3.2.1.1. Case Study: Contamination Investigation 327 $a3.2.2. Inductively Coupled Plasma Mass Spectrometry3.2.2.1. Case Study: Controlled Release of Strontium from P-glass; 3.2.2.2. Case Study: Detection of Cobalt and Chromium Ions in Patients with Metal-on-Metal Implants; 3.2.3. FTIR; 3.2.3.1. Case Study: FTIR Study of Silanol Groups in Silica, Slica-Alumina, and Zeolites; 3.2.3.2. Case Study: Quantification of Bridging and Non-bridging SiO as a Function of SiO2 % by FTIR; 3.2.4. X-Ray Photoelectron Spectroscopy (XPS)-Surface Chemistry 1; 3.2.4.1. Case Study: XPS Study on SiOSi Bridging Energy Variation 327 $a3.2.5. Secondary Ion Mass Spectrometry (SIMS)-Surface Chemistry 23.2.5.1. Case Study: Investigation of the Surface Chemistry of a Bioglass-Polymer Hybrid Composite; 3.3. Physical Property Analysis; 3.3.1. X-Ray Diffraction; 3.3.1.1. Case Study: Characterization of a Calcium Hydroxyapatite Reference Material5; 3.3.1.2. Case Study: Characterization of Amorphous and crystalline Materials; 3.3.2. Nanoporosity Characterization; 3.3.2.1. Case Study; 3.4. Microscopy; 3.4.1. SEM, BEM and EDX; 3.4.1.1. Case Study: drug-loaded sol-gel glass particles; 3.4.2. TEM 327 $a3.4.2.1. Case Study: drug-loaded mesoporous silica 330 $a Inorganic Controlled Release Technology: Materials and Concepts for Advanced Drug Formulation provides a practical guide to the use and applications of inorganic controlled release technology (iCRT) for drug delivery and other healthcare applications, focusing on newly developed inorganic materials such as bioresorbable glasses and bioceramics. The use of these materials is introduced for a wide range of applications that cover inorganic drug delivery systems for new drug development and the reformulation of existing drugs. The book describes basic concepts, principles, and industrial practic 606 $aControlled release technology 615 0$aControlled release technology. 676 $a664.024 700 $aZhang$b Xiang$0651555 702 $aCresswell$b Mark 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910828159503321 996 $aInorganic controlled release technology$93960466 997 $aUNINA