LEADER 02881nam 2200637 450 001 996466531603316 005 20220911050035.0 010 $a3-540-35926-5 024 7 $a10.1007/BFb0068340 035 $a(CKB)1000000000438167 035 $a(SSID)ssj0000326628 035 $a(PQKBManifestationID)12080130 035 $a(PQKBTitleCode)TC0000326628 035 $a(PQKBWorkID)10297470 035 $a(PQKB)10900276 035 $a(DE-He213)978-3-540-35926-5 035 $a(MiAaPQ)EBC5577375 035 $a(Au-PeEL)EBL5577375 035 $a(OCoLC)1066187734 035 $a(MiAaPQ)EBC6842091 035 $a(Au-PeEL)EBL6842091 035 $a(PPN)155228889 035 $a(EXLCZ)991000000000438167 100 $a20220911d1978 uy 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aSerre's conjecture /$fT. Y. Lam 205 $a1st ed. 1978. 210 1$aBerlin ;$aHeidelberg ;$aNew York :$cSpringer-Verlag,$d[1978] 210 4$dİ1978 215 $a1 online resource (XVIII, 230 p.) 225 1 $aLecture notes in mathematics ;$v635 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-08657-9 320 $aIncludes bibliographical references and index. 327 $aFoundations -- The "classical" results on serre?s conjecture -- Two elementary proofs of serre?s conjecture -- Horrocks? theorem -- Quillen?s method -- The quadratic analogue of serre?s conjecture. 330 $aFrom the Preface: "I felt it would be useful for graduate students to see a detailed account of the sequence of mathematical developments which was inspired by the Conjecture, and which ultimately led to its full solution.... I offered a course on Serre's Conjecture to a small group of graduate students in January, 1977 [at the University of California, Berkeley] one year after its solution by Quillen and Suslin. My course was taught very much in the spirit of a mathematical 'guided tour'. Volunteering as the guide, I took upon myself the task of charting a route through all the beautiful mathematics surrounding the main problem to be treated; the 'guide' then leads his audience through the route, on to the destination, pointing out the beautiful sceneries and historical landmarks along the way.". 410 0$aLecture notes in mathematics (Springer-Verlag) ;$v635. 606 $aCommutative rings 606 $aProjective modules (Algebra) 606 $aAlgebraic fields 615 0$aCommutative rings. 615 0$aProjective modules (Algebra) 615 0$aAlgebraic fields. 676 $a512.4 700 $aLam$b T. Y$g(Tsit-Yuen),$f1942-$062325 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466531603316 996 $aSerre's Conjecture$9382007 997 $aUNISA LEADER 01720nam 2200409I 450 001 9910706834803321 005 20180709115259.0 035 $a(CKB)5470000002459121 035 $a(OCoLC)1028048605 035 $a(EXLCZ)995470000002459121 100 $a20180309j198805 ua 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn approach to the quantification of seismic margins in nuclear power plants $ethe importance of BWR plant systems and functions to seismic margins /$fprepared by P.J. Amico 210 1$aWashington, D.C. :$cDivision of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission,$dMay 1988. 215 $a1 online resource (vii, 33 pages) $cillustrations 300 $a"NUREG/CR-5076." 300 $a"UCRL-15985; RD, RM." 300 $a"Manuscript completed: April 1988; date published: May 1988." 300 $a"Applied Risk Technology Corporation." 300 $a"Lawrence Livermore National Laboratory." 517 $aApproach to the quantification of seismic margins in nuclear power plants 606 $aNuclear power plants$xEarthquake effects$zUnited States 606 $aSeismology$zUnited States 615 0$aNuclear power plants$xEarthquake effects 615 0$aSeismology 700 $aAmico$b P. J.$01392292 712 02$aU.S. Nuclear Regulatory Commission.$bOffice of Nuclear Regulatory Research.$bDivision of Engineering, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910706834803321 996 $aAn approach to the quantification of seismic margins in nuclear power plants$93446788 997 $aUNINA