LEADER 02229oam 2200601I 450 001 9910705300403321 005 20170206091530.0 035 $a(CKB)5470000002448358 035 $a(OCoLC)876410352 035 $a(OCoLC)995470000002448358 035 $a(EXLCZ)995470000002448358 100 $a20140411j201310 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMetrics for evaluating the accuracy of solar power forecasting $epreprint /$fJ. Zhang [and five others] 210 1$a[Golden, Colo.] :$cNational Renewable Energy Laboratory,$dOctober 2013. 215 $a1 online resource (8 pages) $ccolor illustrations, color maps 225 1 $aNREL/CP ;$v5500-60142 300 $a"October 2013." 300 $a"To be presented at 3rd International Workshop on Integration of Solar Power into Power Systems, London, England, October 21-22, 2013." 320 $aIncludes bibliographical references (page 8). 517 $aMetrics for evaluating the accuracy of solar power forecasting 606 $aForecasting$xMethodology 606 $aSolar energy$zUnited States$xForecasting 606 $aInterconnected electric utility systems$xForecasting 606 $aSolar energy$xResearch 606 $aForecasting$xMethodology$2fast 606 $aInterconnected electric utility systems$xForecasting$2fast 606 $aSolar energy$xResearch$2fast 615 0$aForecasting$xMethodology. 615 0$aSolar energy$xForecasting. 615 0$aInterconnected electric utility systems$xForecasting. 615 0$aSolar energy$xResearch. 615 7$aForecasting$xMethodology. 615 7$aInterconnected electric utility systems$xForecasting. 615 7$aSolar energy$xResearch. 700 $aZhang$b Jie$0639315 712 02$aNational Renewable Energy Laboratory (U.S.), 801 0$bSOE 801 1$bSOE 801 2$bSOE 801 2$bOCLCO 801 2$bOCLCF 801 2$bOCLCO 801 2$bSOE 801 2$bGPO 906 $aBOOK 912 $a9910705300403321 996 $aMetrics for evaluating the accuracy of solar power forecasting$93538148 997 $aUNINA