LEADER 01633nam 2200445 450 001 9910703576903321 005 20150129130531.0 035 $a(CKB)5470000002431929 035 $a(OCoLC)900979459 035 $a(EXLCZ)995470000002431929 100 $a20150129j197911 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 12$aA comparison of alternate formats for the portrayal of terrain relief on military maps /$fJohn P. Farrell and Lawrence M. Potash 210 1$aAlexandria, Virginia :$cU.S. Army Research Institute for the Behavioral and Social Sciences,$dNovember 1979. 215 $a1 online resource (x, 58 pages) $cillustrations 225 1 $aTechnical report ;$v428 300 $aTitle from title screen (viewed Jan. 14, 2015). 300 $a"Human Factors Technical Area." 300 $a"November 1979." 300 $a"Army project number 2Q763743A774." 320 $aIncludes bibliographical references (page 25). 606 $aMilitary maps 606 $aCartography 606 $aTopographic maps 615 0$aMilitary maps. 615 0$aCartography. 615 0$aTopographic maps. 700 $aFarrell$b John Patrick$f1939-$01398508 702 $aPotash$b Lawrence M. 712 02$aU.S. Army Research Institute for the Behavioral and Social Sciences.$bHuman Factors Technical Area, 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910703576903321 996 $aA comparison of alternate formats for the portrayal of terrain relief on military maps$93461917 997 $aUNINA LEADER 11185nam 2200565 450 001 9910830080803321 005 20240228205951.0 010 $a1-119-81902-4 010 $a1-119-51730-3 035 $a(MiAaPQ)EBC7244336 035 $a(Au-PeEL)EBL7244336 035 $a(OCoLC)1378392467 035 $a(EXLCZ)9926561916800041 100 $a20230618d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultiscale Modelling in Biomedical Engineering /$fAntonis I. Sakellarios, Vassiliki T. Potsika, and Dimitrios I. Fotiadis 210 1$aHoboken, New Jersey :$cJohn Wiley & Sons, Inc.,$d[2023] 210 4$d©2023 215 $a1 online resource (402 pages) 225 1 $aIEEE Press Series on Biomedical Engineering Series 311 08$aPrint version: Sakellarios, Antonis I. Multiscale Modelling in Biomedical Engineering Newark : John Wiley & Sons, Incorporated,c2023 9781119517344 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Author Biographies -- Preface -- List of Abbreviations -- List of Terms -- Chapter 1 Systems Biology and Multiscale Modeling -- 1.1 Introduction -- 1.2 Systems Biology -- 1.3 Systems Biology Modeling Goals -- 1.4 Systems Biology Modeling Approach -- 1.5 Application of Multiscale Methods in Systems Biology -- 1.5.1 Introduction -- 1.6 The Use of Systems Biology and Multiscale Modeling in Biomedical and Medical Science -- 1.7 Application of Computational Methods in Biomedical Engineering -- 1.7.1 Fundamental Principles -- 1.7.2 Finite Element Method -- 1.7.3 Boundary Element Method -- 1.7.4 Finite Differences Method -- 1.8 Challenges -- References -- Chapter 2 Biomedical Imaging -- 2.1 Introduction -- 2.2 X-ray Radiography -- 2.2.1 X-ray Interaction with Tissues -- 2.2.2 Medical Applications of X-rays -- 2.3 Computed Tomography -- 2.3.1 The Principle of CT Imaging -- 2.3.2 The Evolution of CT Scanners -- 2.3.3 Medical Applications of CT Imaging -- 2.3.3.1 Application of CT Imaging in Cancer -- 2.3.3.2 Application of CT Imaging in Lungs -- 2.3.3.3 Application of CT Imaging in Cardiovascular Disease -- 2.3.3.4 Application of CT Imaging in Other Fields -- 2.3.4 Radiation of CT Imaging -- 2.4 Diagnostic Ultrasound -- 2.4.1 The Principle of US -- 2.4.2 Medical Applications of US -- 2.5 Magnetic Resonance Imaging -- 2.5.1 MRI Principle -- 2.5.2 Medical Applications of MRI -- 2.6 Positron Emission Tomography (PET) -- 2.6.1 The Principle of PET -- 2.6.2 Medical Applications of PET -- 2.7 Single Photon Emission Computed Tomography -- 2.7.1 The Principle of SPECT -- 2.7.2 Medical Applications of SPECT -- 2.8 Endoscopy -- 2.8.1 Medical Applications of Endoscopy -- 2.9 Elastography -- 2.9.1 Elastographic Techniques -- 2.9.2 Elastographic Medical Applications -- 2.10 Conclusions and Future Trends. 327 $aReferences -- Chapter 3 Computational Modeling at Molecular Level -- 3.1 Introduction -- 3.2 Introduction to Molecular Mechanics -- 3.2.1 Chemical Formulas -- 3.2.2 Molecular Structure and Polarity -- 3.2.2.1 Mathematical Modeling of Polarizing Biochemical Systems -- 3.3 Molecular Bioengineering in Areas Critical to Human Health -- 3.3.1 Cell Biology -- 3.3.1.1 Biology of Growth Factor Systems -- 3.3.2 Diagnostic Medicine -- 3.3.2.1 Lab-on-a-Chip Devices -- 3.3.2.2 Biosensors -- 3.3.3 Preventive Medicine -- 3.3.4 Therapeutic Medicine -- 3.3.4.1 Drug Delivery -- 3.3.4.2 Tissue Engineering -- References -- Chapter 4 Computational Modeling at Cell Level -- 4.1 Introduction -- 4.2 Introduction to Cell Mechanics -- 4.2.1 Cell Material Properties -- 4.2.2 Cell Composition and Structure -- 4.3 Cellular Bioengineering in Areas Critical to Human Health -- 4.3.1 Biology -- 4.3.2 Diagnostic Medicine -- 4.3.2.1 Organ Chip Technology -- 4.3.2.2 Mechanosensors -- 4.3.3 Therapeutic Medicine -- 4.3.3.1 Drug Delivery -- 4.3.3.2 Tissue Engineering -- 4.3.4 P4 Medicine -- References -- Chapter 5 Computational Modeling at Tissue Level -- 5.1 Introduction -- 5.2 Epithelial Tissue -- 5.2.1 Composition and Properties of Epithelial Tissue -- 5.2.2 Computational Modeling of Epithelial Tissue -- 5.3 Connective Tissue -- 5.3.1 Composition and Properties of Connective Tissue -- 5.3.2 Computational Modeling of Connective Tissue -- 5.4 Muscle Tissue -- 5.4.1 Composition and Properties of Muscle Tissue -- 5.4.2 Computational Modeling of Muscle Tissue -- 5.4.2.1 Computational Modeling of Skeletal Muscle Tissue -- 5.4.2.2 Computational Modeling of Smooth Muscle Tissue -- 5.4.2.3 Computational Modeling of Cardiac Muscle Tissue -- 5.4.2.4 Musculotendon Models -- 5.5 Nervous Tissue -- 5.5.1 Computational Modeling of Brain Tissue -- 5.5.2 Computational Modeling of the Spinal Cord Tissue. 327 $a5.5.3 Computational Modeling of Peripheral Nerves -- 5.6 Conclusion -- References -- Chapter 6 Macroscale Modeling at the Organ Level -- 6.1 Introduction -- 6.2 The Respiratory System -- 6.2.1 Computational Modeling of the Respiratory System -- 6.3 The Digestive System -- 6.3.1 Computational Modeling of the Digestive System -- 6.4 The Cardiovascular System -- 6.4.1 Computational Modeling of the Cardiovascular System -- 6.5 The Urinary System -- 6.5.1 Computational Modeling of the Urinary System -- 6.6 The Integumentary System -- 6.6.1 Computational Modeling of the Integumentary System -- 6.7 The Musculoskeletal System -- 6.7.1 Introduction to the Skeletal System -- 6.7.2 Introduction to the Muscular System -- 6.7.3 Computational Modeling of the Muscular-Skeletal System -- 6.8 The Endocrine System -- 6.8.1 Computational Modeling of the Endocrine System -- 6.9 The Lymphatic System -- 6.9.1 Computational Modeling of the Lymphatic System -- 6.10 The Nervous System -- 6.10.1 Computational Modeling of the Nervous System -- 6.11 The Reproductive System -- 6.11.1 Computational Modeling of the Reproductive System -- 6.12 Conclusion -- References -- Chapter 7 Mechanotransduction Perspective, Recent Progress and Future Challenges -- 7.1 Introduction -- 7.2 Methods for Studying Mechanotransduction -- 7.2.1 How Mechanical Forces Are Detected -- 7.2.2 Transmission of Mechanical Forces -- 7.2.3 Conversion of Mechanical Forces to Signals -- 7.3 Mathematical Models of Mechanotransduction -- 7.3.1 ODE Based Computational Model -- 7.3.2 PDE Based Computational Model -- 7.3.2.1 Mechanical Factors that Affect Cell Differentiation and Proliferation -- 7.3.2.2 A Case Example of Multi-Scale Modeling Cell Differentiation and Proliferation -- 7.3.3 Methodology of a Hybrid Multi-Scale Approach -- 7.3.3.1 The Agent-Based Model (ABM) -- 7.3.3.2 Mechanical Model -- 7.4 Challenges. 327 $aReferences -- Chapter 8 Multiscale Modeling of the Musculoskeletal System -- 8.1 Introduction -- 8.2 Structure of the Musculoskeletal System -- 8.2.1 Structure of the Skeletal System Components -- 8.2.2 Structure of the Muscular System Components -- 8.3 Elasticity -- 8.4 Mechanical Characteristics of Muscles -- 8.5 Multiscale Modeling Approaches of the Musculoskeletal System -- 8.5.1 Multiscale Modeling of Bones -- 8.5.2 Multiscale Modeling of Articular Cartilage -- 8.5.3 Multiscale Modeling of Tendons and Ligaments -- 8.5.3.1 Advances in Multiscale Modeling of Tendons -- 8.5.3.2 Advances in Multiscale Modeling of Ligaments -- 8.5.4 Multiscale Modeling of the Skeletal Muscle -- 8.5.5 Multiscale Modeling of the Smooth Muscle -- 8.6 Conclusion -- References -- Chapter 9 Multiscale Modeling of Cardiovascular System -- 9.1 Introduction -- 9.2 Cardiovascular Mechanics -- 9.2.1 Visualization of the Cardiovascular System and 3D Arterial Reconstruction -- 9.2.2 Blood Flow Modeling -- 9.2.2.1 Steady and Pulsatile Flow of Blood -- 9.2.2.2 Computational Fluid Dynamics Modeling -- 9.2.2.3 Newtonian and Non-Newtonian Behavior of Blood -- 9.2.3 Plaque Growth Modeling -- 9.2.4 Agent-Based Modeling -- 9.2.4.1 Key Components of Agent-Based Modelling -- 9.2.4.2 Agent-Based Modelling and Simulation Approach -- 9.2.4.3 Problem Definition -- 9.2.4.4 ABM Applications in Cardiovascular Systems -- 9.2.5 Discrete Particle Dynamics -- 9.2.6 Multiscale Model of Drug Delivery/Restenosis -- 9.2.6.1 Benefits of Multiscale Model of Drug Delivery/Restenosis -- 9.3 Conclusions -- References -- Chapter 10 Risk Prediction -- 10.1 Introduction -- 10.2 Medical Data Preprocessing -- 10.2.1 Data Sharing -- 10.2.2 Data Harmonization -- 10.3 Machine Learning and Data Mining -- 10.3.1 Supervised Learning Algorithms -- 10.3.1.1 Regression Analysis -- 10.3.1.2 Support Vector Machines. 327 $a10.3.1.3 Naïve Bayes -- 10.3.1.4 Decision Trees -- 10.3.1.5 Ensemble Classifiers -- 10.3.1.6 Artificial Neural Networks -- 10.3.1.7 K-Means -- 10.3.1.8 Spectral Clustering -- 10.3.1.9 Hierarchical Clustering -- 10.4 Explainable Machine Learning -- 10.4.1 Transparency -- 10.4.2 Evaluation and Types of Explanation -- 10.5 Example of Predictive Models in Cardiovascular Disease -- 10.6 Conclusion -- References -- Chapter 11 Future Trends -- 11.1 Virtual Populations -- 11.1.1 Methods for Virtual Population Generation -- 11.1.2 A Methodological Approach for a Virtual Population -- 11.1.2.1 Multivariate Log-Normal Distribution (log-MVND) -- 11.1.2.2 Supervised Tree Ensembles -- 11.1.2.3 Unsupervised Tree Ensembles -- 11.1.2.4 Radial Basis Function-Based Artificial Neural Networks -- 11.1.2.5 Bayesian Networks -- 11.1.2.6 Performance Evaluation of the Quality of the Generated Virtual Patient Data -- 11.1.3 A Novel Approach for a Virtual Population Combining Multiscale Modeling -- 11.2 Digital Twins -- 11.2.1 Ecosystem of the Digital Twin for Health -- 11.2.2 An Example Workflow of a Digital Twin -- 11.3 Integrating Multiscale Modeling and Machine Learning -- 11.3.1 Physics-Informed NN (PINN) -- 11.3.2 Deep NN Algorithms Inspired by Statistical Physics and Information Theory -- 11.4 Conclusion and Future Trends -- References -- Index -- EULA. 330 $a"The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems." 410 0$aIEEE Press series in biomedical engineering. 606 $aBiomedical engineering$xMathematical models 606 $aBiomedical engineering$xComputer simulation 606 $aBiomedical engineering$xMathematics 615 0$aBiomedical engineering$xMathematical models. 615 0$aBiomedical engineering$xComputer simulation. 615 0$aBiomedical engineering$xMathematics. 676 $a610.28 700 $aSakellarios$b Antonis I.$01672757 702 $aPotsika$b Vassiliki T. 702 $aFotiadis$b Dimitrios I. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830080803321 996 $aMultiscale Modelling in Biomedical Engineering$94036309 997 $aUNINA LEADER 01744nam 2200541 450 001 9910823080603321 005 20230803041354.0 010 $a1-4674-3764-6 035 $a(CKB)3710000000470739 035 $a(SSID)ssj0001544034 035 $a(PQKBManifestationID)16134035 035 $a(PQKBTitleCode)TC0001544034 035 $a(PQKBWorkID)14097171 035 $a(PQKB)10835004 035 $a(MiAaPQ)EBC4859284 035 $a(Au-PeEL)EBL4859284 035 $a(CaPaEBR)ebr11388383 035 $a(OCoLC)988870094 035 $a(EXLCZ)993710000000470739 100 $a20170616h20132013 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBringing the Word to life $eengaging the New Testament through performing it /$fRichard F. Ward & David J. Trobisch 210 1$aGrand Rapids, Michigan ;$aCambridge, England :$cWilliam B. Eerdmans Publishing Company,$d2013. 210 4$d©2013 215 $a1 online resource (82 pages) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a0-8028-6885-1 320 $aIncludes bibliographical references. 606 $aOral tradition$xReligious aspects$xHistory 606 $aOral reading 606 $aStorytelling$xReligious aspects$xChristianity 615 0$aOral tradition$xReligious aspects$xHistory. 615 0$aOral reading. 615 0$aStorytelling$xReligious aspects$xChristianity. 676 $a225.6 700 $aWard$b Richard F.$01650048 702 $aTrobisch$b David 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910823080603321 996 $aBringing the Word to life$93999190 997 $aUNINA