LEADER 01772nam 2200457Ia 450 001 9910702192403321 005 20120921152546.0 035 $a(CKB)5470000002424210 035 $a(OCoLC)810458724 035 $a(EXLCZ)995470000002424210 100 $a20120921d2012 ua 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aWind power plant prediction by using neural networks$b[electronic resource] $epreprint /$fZ. Liu ... [and others] 210 1$a[Golden, Colo.] :$cNational Renewable Energy Laboratory,$d[2012] 215 $a1 online resource (7) $ccolor illustrations 225 1 $aNREL/CP ;$v5500-55871 300 $aTitle from title screen (viewed on Sept. 21, 2012). 300 $a"To be presented at the IEEE Energy conversion Conference and Exposition, Raleigh, North Carolina, September 15-20, 2012." 300 $a"August 2012." 300 $a"Contract No. DE-AC36-08GO28308." 320 $aIncludes bibliographical references (page 7). 517 $aWind power plant prediction by using neural networks 606 $aWind power$xForecasting 606 $aWind power plants$xForecasting 606 $aNeural networks (Computer science) 615 0$aWind power$xForecasting. 615 0$aWind power plants$xForecasting. 615 0$aNeural networks (Computer science) 701 $aLiu$b Z$01405433 712 02$aNational Renewable Energy Laboratory (U.S.) 712 12$aIEEE Energy Conversion Congress and Exposition$f(2012 :$eRaleigh, N.C.) 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910702192403321 996 $aWind power plant prediction by using neural networks$93481905 997 $aUNINA