LEADER 02329oam 2200421Ia 450 001 9910699645603321 005 20110131074729.0 035 $a(CKB)5470000002404481 035 $a(OCoLC)665731581 035 $a(EXLCZ)995470000002404481 100 $a20100927d2010 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUser's guide to MBC3$b[electronic resource] $emulti-blade coordinate transformation code for 3-bladed wind turbines /$fG.S. Bir 210 1$aGolden, CO :$cNational Renewable Energy Laboratory,$d[2010] 215 $a1 online resource (iv, 24 pages) $cdigital, PDF file 225 1 $aNREL/TP ;$v500-44327 300 $aTitle from title screen (viewed Sept. 27, 2010). 300 $a"September 2010." 320 $aIncludes bibliographical references (page 24). 330 3 $aThe dynamics of wind turbine rotor blades are conventionally expressed in rotating frames attached to the individual blades. The tower-nacelle subsystem though, sees the combined effect of all rotor blades, not the individual blades. Also, the rotor responds as a whole to excitations such as aerodynamic gusts, control inputs, and tower-nacelle motion--all of which occur in a nonrotating frame. Multi-blade coordinate transformation (MBC) helps integrate the dynamics of individual blades and express them in a fixed (nonrotating) frame. MBC involves two steps: transforming the rotating degrees of freedom and transforming the equations of motion. Reference 1 details the MBC operation. This guide summarizes the MBC concept and underlying transformations. This guide also explains how to use MBC3, a MATLAB-based script we developed to perform multi-blade coordinate transformation of system matrices for three-bladed wind turbines. 517 $aUser's guide to MBC3 606 $aWind turbines$xMathematical models 606 $aWind power$xResearch 615 0$aWind turbines$xMathematical models. 615 0$aWind power$xResearch. 700 $aBir$b Gunjit S$01398639 712 02$aNational Renewable Energy Laboratory (U.S.) 801 0$bSOE 801 1$bSOE 801 2$bGPO 906 $aBOOK 912 $a9910699645603321 996 $aUser's guide to MBC3$93462330 997 $aUNINA